CONFLEX 8.A Tutorial

はじめに

この度は CONFLEX をご購入いただきまして、誠にありがとうございます。

CONFLEXは、分子力学法(Molecular Mechanics)を用いて、柔らかい自由度のある有機分子の配座探索のみならず配座分布を考慮した基準振動解析、熱力学的諸量、紫外・可視光吸収スペクトル、円二色性スペクトル、および NMR カップリング定数を計算により予測するプログラムです。本書は、それぞれの機能を既存の有機分子を実際に計算することで解説しています。

CONFLEX は、コンフレックス株式会社の登録商標です。

本書に記載されている各社の社名、製品名およびサービス名は、各社の商標または登録商標です。

目次

1. 構造最適化と振動解析	1
1.1 Cyclohexane の計算とファイル	1
1.2 力場パラメーターのカスタマイズ	7
2. 配座探索	10
2.1 配座探索の設定	10
2.2 配座探索計算の出力ファイル	10
2.3 配座探索空間の拡張	16
3. CD/UV スペクトル解析	17
4. 結晶構造最適化	21
4.1 結晶計算法	21
4.2 CONFLEX を用いた結晶構造最適化	22
5. 結晶構造予測と結晶多形スクリーニング	29
6. 結晶表面解析	43
7. 溶媒効果を取り入れた構造最適化・振動解析計算	49
8. アミノ酸残基置換機能	52
9. 水/オクタノール分配係数の計算	57
10. NMR 解析機能について	59
11. 類似した異性体構造の分類: 配座クラスタリング	64
12. ホストーリガンド配位探索計算による安定な分子間配位構造の探索	68
12.1 計算手法の概要	69
12.2 酢酸二量体のエネルギー極小構造の探索	70
12.3 グルコース分子への水分子の配位探索	72
13. 動的反応座標(Dynamic Reaction Coordinate, DRC)法による動力学	≱計算 ——
	78
13.1 DRC 法の概要	78
13.2 DRC 計算例: α -D-Glucose + H ₂ O	
14. 重于化字計算フロクフム Gaussian を用いた構造最適化および配座務 実行	R系の 22
大门	03
14.1 衆呪政化 14.2 ini ファイルの設定	دة
14.3 ファイルを用いた Gaussian 実行	85

14.4 Propylene glycol \mathcal{O}	B3LYP/6-31G(d) レベルにし	くる配座探索計算	
-------------------------------------	----------------------	----------	--

1. 構造最適化と振動解析

ここでは CONFLEX による分子構造の構造最適化および振動解析の内容を見ていきます。

1.1 Cyclohexaneの計算とファイル

Cyclohexane を例として、入力ファイルと出力ファイルの内容を解説します。

1.1.1 分子構造の定義ファイル

MDL-Mol 形式で以下のような入力構造データ(ファイル名は Cyclohexane.mol)を作成します。データの 各部分の意味は以下の通りです:

Cyclohexane.mol

- A1 原子の数(999 まで)
- A2 結合の数(999 まで)
- A3 現在使用されていません
- A4 現在使用されていません
- A5 光学活性中心の存在(0:光学活性中心 なし、1:光学活性中心あり):現在 使用されていません
- A1 A2 A3 A4 A5 3.3000 C 3.8668 C 1.7754 C .0207 0 0 2.0729 2.2607 1.1558 3.3484 1.1303 Н 4.2288 0.0000 2.8509 3.5532 H 0 1.9366 2.1559 4.9699 Н Ő Ō 3.0924 2.6834 3.7005 н 0 0 1.9714 1.0564 1.1030 C H 0 0 0.3611 1.3773 2.1389 3.8144 2.0768 1 5264 н 0 0 0 0 0 0.0000 Н 0.0366 1.5495 1.2696 H 2.1070 1.0050 1.6695 С 1.1969 Н 3.1287 1.3737 0.8836 1.4133 3.1946 H C 0 0 0 0 0 0 0 0 0 0 0 0.9931 0.4169 3.4455 H Λ 0 0 0 0 0 0 0 0 0 0 0 ▲ 0 0 B1 **B**2 0 0 2 3 3 3 11 9 8 C Cl 0 13 8 14 13 13 15 16 13 16 17 C 0 0
- B1 原子のデカルト座標と原子記号
- B2 原子の特性リスト(同位体、電荷、立体中心等を示します。通常、電荷と立体中心しか必要としません。)

D1

- C1 原子同士の結合情報(ある原子を中心とした場合の隣接する原子の結合情報を示します。結合状態、立体状態、結合トポロジー等を示します。通常は、隣接原子間の結合情報、結合状態、立体状態しか必要としません。)
- D1 原子座標の終了であることを示し、必須情報です。

1.1.2 計算条件を指定するファイル

CONFLEX では、分子構造ファイルと同じファイル名で拡張子を.ini としたファイルを用意し、そこに分子 力場やオプションを記述して計算を実行します。1.1.1 の Cyclohexane.mol を計算するのであれば、 Cyclohexane.ini というファイルを用意します。 このファイルは、<u>必ず分子構造ファイルと同じディレクト</u> リー (フォルダー) に存在させる必要があります。

GUI を使用して計算を行う場合は、実行時に GUI が自動的に.ini ファイルを作成します。コマンドラインから実行する場合は、このファイルをテキストエディタ等を使用してあらかじめ作成しておく必要がありますが、ファイルが無くとも計算は実行されます。この場合、.ini ファイルに

MMFF94S OPT=NEWTON OPTBY=ENERGY

と指定した時と同じ計算を実行します。 それぞれのキーワードは、

•MMFF94s 力場パラメーターを使用する
•構造最適化の手法には Full-Matrix Newton-Raphson 法を適用する
•エネルギーを指標として構造最適化を行う。

を意味しており、これが CONFLEX のデフォルト設定になります。

1.1.3 構造最適化計算で出力されるファイル

Cyclohexane.mol と **Cyclohexane.ini** を用いて構造最適化計算を行い、計算が正常に終了すると、以下の3 つのファイルが生成します。

Cyclohexane-F.mol

最適化により得られた構造を、入力ファイルと同じ MDL-Mol 形式で出力します。次章の配座探索において入力ファイルとして使用します。

Cyclohexane.mol											
CONFLEX 12080816	5573D 1	1.0000	0	-3.5	6094	0					
D3D ,E = -3.561,	G = 6.03	38E-11,	M(0)								
MMFF94S(2010-12-04	HG)										
18 18 0 0		999	V200	0							
-1.2627 0.72	290 0.2	2258 C	0	0 0	0	0					
0.0000 1.45	580 -0.2	2258 C	0	0 0	0	0					
-1.2627 -0.72	290 -0.2	2258 C	0	0 0	0	0					
-2.1462 1.23	391 -0.3	1742 н	0	0 0	0	0					
-1.3365 0.77	16 1.3	3195 н	0	0 0	0	0					
0.0000 2.47	782 0.1	1742 н	0	0 0	0	0					
0.0000 1.54	133 -1.3	3195 H	0	0 0	0	0					
0 0000 -1 45	580 0 2	2258 C	0	0 0	0	0					
-2 1462 -1 23	391 0	1742 н	0	0 0	Õ	0					
-1 3365 -0 75	16 -1	3195 н	0	0 0	0	0					
0 0000 -2 45	182 -0 7	1742 н	0	0 0	0	0					
0 0000 -1 54	133 1	3195 н	0	0 0	0	0					
1 2627 -0 72		2250 C	0	0 0	0	0					
2 1462 -1 23	201 0.2	1742 U	0	0 0	0	0					
1 3365 _0 75	16 _1 °	2105 U	0	0 0	0	0					
1 2627 0 77	-1.	2250 C	0	0 0	0	0					
1 2265 0 77	116 1	2230 0	0	0 0	0	0					
2 1462 1 23		1740 II	0	0 0	0	0					
2.1402 1.23)))))))))))))))))))	1/42 п	0	0 0	0	0					
2 1 1 0 0)										
3 1 1 0 0)										
1410 0)										
)										
2610)										
2 / 1 0 0)										
2 16 1 0 0)										
3810 0)										
3910 0)										
3 10 1 0 0)										
11 8 1 0 0)										
12 8 1 0 0)										
13 8 1 0 0)										
14 13 1 0 0)										
13 15 1 0 0)										
16 13 1 0 0)										
16 17 1 0 0)										
16 18 1 0 0)										
M END											

Cyclohexane.bsf

最適化構造の座標やエネルギー値などを出力したファイルです。

999.9 6 0 6 0 1 0 010.00 1.00E-06 1.00E-06 0 0 25.00001000110000000000 Cyclohexane: Cyclohexane.mol $\vec{D3D}$, E = -3.561, G = 6.038E-11, M(0) MMFF94S(2010-12-04HG) 18 18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -1.262673724 0.729005014 0.225782342 6 0 12 0.000000000 1.458010029 -0.225782342 6 0 12 7 16 9 10 1 6 1 8 -1.262673724 -0.729005014 -0.225782342 6 0 12
 1.20201071
 0.72100001
 0.72100001
 0.72100001
 0.771632792
 1.319462875

 0.000000000
 2.478205714
 0.174187977
 0.000000000
 1.543265583
 -1.319462875

 0.000000000
 1.543265583
 -1.319462875
 0.025782342
 0.25782342
 0 -2.146189104 0 1 1 0 -1 336507200 0 1 1 0 1 1 0 0 12 3 11 12 13 -2.146189104 -1.239102857 0.174187977 -1.336507200 -0.771632792 -1.319462875 0 1 1 0 1 0.00000000 -2.478205714 -0.174187977 0 1 0.00000000 -1.543265583 1.319462875 1 0 1.262673724 -0.729005014 -0.225782342 0 12 0.174187977 1 0 1 13 2.146189104 -1.239102857 1.336507200 -0.771632792 -1.319462875 1 0 1 Ω 1.2626737240.7290050140.225782342601221.3365072000.7716327921.319462875101162.1461891041.239102857-0.17418797710116 2 13 17 18

Cyclohexane.bso

計算に用いた力場パラメーターの数値や、各相互作用のエネルギー、更に基準振動解析により得られた熱 力学的諸量、振動数、振動モードを出力します。GUIから計算を実行すると、終了と同時にこのファイルを 開きます。

_/ _/_/_/ _/ _/ 7 _7_/_/ _7 7 _7_/_/ _7 7 _7_/_/ _7 _7 _7_/_/ -/ -/ , -/ - -/ -/ -/ - -/ -/ -/ - -/ -/ -/ * * *

START --- CONFLEX VER.7.00.0711 (UPDATED JULY, 11TH, 2012) DATE: 2012/08/08 TIME: 16:57:11.184

MAXIMUM NUMBER OF THREADS: 2 CURRENT NUMBER OF THREADS: 1

<*** LEGAL LICENSE INFORMATION ***>	>
LICENSEE USER'S NAME:	License for CONFLEX Developer
LICENSING INSTITUTION:	CONFLEX Corporation
ADDRESS:	MG Meguro, 2-15-19, Kami-Osaki
CITY:	Shinagawa-ku, Tokyo
ZIP CODE:	141-0021
NATION:	Japan
TELEPHONE NUMBER:	+81-3-6380-8290
FAX NUMBER:	+81-3-6380-8299
E-MAIL ADDRESS:	info@conflex.co.jp
DATE OF THE LICENSE ACTIVATION:	2012/01/01
DATE OF THE LICENSE EXPIRE:	2013/01/01
THE NUMBER OF ATOMS IS LIMITED TO:	100000

ANGLES: E = 0.5*KB*(THETA-T0)**2 + 0.5*KB*BC*(THETA-T0)**3

(A-1): 選択された力場パラメーター

(A-2): 選択された力場における分子構造に含まれる原子タイプ情報

(A-3): 選択された力場における伸縮相互作用項の関数と使用されるパラメーターに関する情報

以下、各相互作用項の関数とパラメーターに関する情報が出力されます。

**** INITIAL VALUES ****

A TOTA	TOM CHARG	E 00	(A-4)						(A-7)									
		-COORDINATES-						5) (A-6)						GRADIENTS				
ATOM	Х	Y	Z	ANUM	ICHG	NMASS	ATYPE		C01	NNECT	IVITY			х	Y	Z		
1	1.39747	0.42484	-0.23756	6	0	12	1	2	3	4	5	0	0	-7.947	-2.299	3.539		
2	0.33119	1.42243	0.23674	6	0	12	1	1	6	7	16	0	0	-1.820	-8.270	-3.680		
3	1.06721	-0.99757	0.23754	6	0	12	1	1	8	9	10	0	0	-5.981	5.457	-3.476		
4	2.40073	0.73035	0.14482	1	0	1	5	1	0	0	0	0	0	12.13	3.729	4.103		
5	1.45174	0.44086	-1.35212	1	0	1	5	1	0	0	0	0	0	-8.4675E-02	-4.7456E-02	-12.22		
6	0.56880	2.44334	-0.14755	1	0	1	5	2	0	0	0	0	0	2.943	12.40	-4.178		
7	0.34486	1.47960	1.35131	1	0	1	5	2	0	0	0	0	0	-5.1485E-02	-1.4371E-02	12.29		
8	-0.33026	-1.42261	-0.23634	6	0	12	1	3	11	12	13	0	0	1.956	8.170	3.497		
9	1.83249	-1.71363	-0.14657	1	0	1	5	3	0	0	0	0	0	9.207	-8.627	-4.187		
10	1.11029	-1.03618	1.35212	1	0	1	5	3	0	0	0	0	0	3.2648E-02	0.1152	12.29		
11	-0.56720	-2.44361	0.14789	1	0	1	5	8	0	0	0	0	0	-2.824	-12.38	4.178		
12	-0.34302	-1.47972	-1.35094	1	0	1	5	8	0	0	0	0	0	-1.8874E-02	8.4152E-02	-12.29		
13	-1.39856	-0.42528	0.23556	6	0	12	1	8	14	15	16	0	0	7.891	2.398	-3.544		
14	-2.40017	-0.73026	-0.15215	1	0	1	5	13	0	0	0	0	0	-12.19	-3.747	-4.277		
15	-1.45830	-0.44303	1.34982	1	0	1	5	13	0	0	0	0	0	-0.1138	6.7291E-02	12.23		
16	-1.06689	0.99810	-0.23559	6	0	12	1	2	13	17	18	0	0	6.149	-5.707	3.780		
17	-1.11040	1.03888	-1.35000	1	0	1	5	16	0	0	0	0	0	-4.7756E-03	-7.7854E-02	-12.21		
18	-1.83185	1.71444	0.14921	1	0	1	5	16	0	0	0	0	0	-9.277	8.754	4.143		

ATOMIC CHARGE APPROACH IS USED TO CALCULATE ELECTROSTATIC INTERACTION AND DIPOLE MOMENT

(A-4):入力(初期)構造の座標と原子番号

(A-5): 自動的に判定された原子タイプ

(A-6): 自動判定された結合表

(A-7):入力(初期)構造のエネルギー勾配

-----DIRECTION COSINES-----

0.0000	0.0000	0.0000	CENTER OF MASS			
1.0000 0.0000 0.0000	0.0000 1.0000 0.0000	0.0000 0.0000 1.0000	INERTIAL MOMENT = INERTIAL MOMENT = INERTIAL MOMENT =	118.005 118.079 205.685	AMU*ANGSTROM**2 AMU*ANGSTROM**2 AMU*ANGSTROM**2	(A-8)
0.0000	0.0000	0.0000	DIPOLE MOMENT =	0.000	DEBYE	(-10)

•					
	3.43863	=	ENERGY	STRAIN	TOTAL BOND
	0.680724	=	ENERGY	STRAIN	TOTAL ANGLE
	-11.4344	=	ENERGY	STRAIN	TOTAL TORSION
	0.00000	=	ENERGY	STRAIN	TOTAL OUT-OF-PLANE ANGLE
	5.90623	=	ENERGY	STRAIN	TOTAL NONBONDED
	0.00000	=	ENERGY	RACTION	TOTAL CHARGE INTER
(1-0)	0.00000	=	ENERGY	-DIPOLE	TOTAL DIPOLE-
(A-9)	0.00000	=	ENERGY	STRETCH	TOTAL STRETCH-S
	-0.324767	=	ENERGY	CH-BEND	TOTAL STRET
	0.00000	=	ENERGY	TORSION	TOTAL STRETCH-
	0.00000	=	ENERGY	ND-BEND	TOTAL BEI
	0.00000	=	ENERGY	STRAIN	TOTAL BEND-TORSION
	0.00000	=	ENERGY	RACTION	TOTAL PSEUDO INTEN
	0.00000	=	ENERGY	STRAINT	TOTAL CONS
	-1.73362	=	ENERGY	STERIC	TOTAL

(A-8):入力(初期)構造の慣性モーメントと双極子モーメント (A-9):入力(初期)構造の各相互作用関数項の立体エネルギー

***** CONV MAXI	STA ERGE MUM	RT NEWTON-RAI NCE CRITERIA NUMBER OF KH	PHSON OPTIMIZ ARE GRMS < ITERATIONS A	ATION * 1.0E-06 RE:	**** AND XRMS < 54 (= 1	< 1.0E-06 MAXITR_NR)				(4, 10)		
КН 0 1	KE 0 2	ENERGY -3.5609 -3.5609	GRMS 7.36475E-05 6.03814E-11	ALPH. 0.00 1.00	A (00 0) 00 -7.(GD0 .0000 D1846E-10 -7	GDA 0.0000 .54669E-17	XRMS 0.0000 3.72220E-0	TIME 0.00 7 0.00	(A-10)		
OPTI EIGE	MIZA NVAL	TION CONVERGE UES OF SECON	ed (A-11) D derivatives	MATRIX	:							
-1.7	3251	E-13 -9.6141	5E-14 3.2588	2E-13	1.45420E-12	2 7.90743E-	12 1.41066	E-11 8.95	68 8	.9568	20.880	45.787
57	.208	57.20	3 111.2	8	111.28	122.08	127.11	127.	11 1	27.37	127.37	128.63
13	2.09	132.09	9 135.6	6	139.48	165.85	165.85	175.	66 2	10.84	210.84	256.50
31	8.24	318.24	1 341.0	0	341.00	370.30	405.27	629.	80 7	59.65	759.65	1016.7
10	16.7	1330.0	5 1454.	9	1558.6	1558.6	1592.1	1626	.7 1	626.7	1796.9	1816.3
18	16.3	1821.2	2 1821.	2	1956.7							
CUTC ENEF DIAG INVE ENEF EIGE TIMI	OFF = GY, GONAL RSIO GY A NVAL NG F	1.0000E-06 FIRST, AND SI IZATION TIME N TIME = (ND FIRST DER UE CALCULATIO ACTOR = 5.(ECOND DERIVAT = 0.0001 0.0000 UVATIVES CALC DN TIME = 03E-10	IVES CA ULATION 0.0000	LCULATION T	FIME = 0.	0000	(A-12)				

(A-10): Newton-Raphson 法による構造最適化の経過

(A-11):構造最適化が収束した

(A-12): 最終固有値の一覧

Cut-offの絶対値以下の固有値を0とすると、直線分子の場合は5個、それ以外では6個の固有値が0

ſ								1
I		вои	D S T	RETCH	ING	(18	BONDS)	
I	AT	OMS	BOND		BOND	STERIC		
I	I	J	LENGTH	DEVIATIO	N TYPE	ENERGY		
I	1	2	1.5263	0.0183	1	0.0993		
I	1	3	1.5263	0.0183	1	0.0993		
I	1	4	1.0958	0.0028	5	0.0027		
I	1	5	1.0970	0.0040	5	0.0054		
I	2	6	1.0958	0.0028	5	0.0027		
I	2	7	1.0970	0.0040	5	0.0054		
I	2	16	1.5263	0.0183	1	0.0993		
I	3	8	1.5263	0.0183	1	0.0993		
I	3	9	1.0958	0.0028	5	0.0027		
I	3	10	1.0970	0.0040	5	0.0054		(A-13)
I	8	11	1.0958	0.0028	5	0.0027		× /
I	8	12	1.0970	0.0040	5	0.0054		
I	8	13	1.5263	0.0183	1	0.0993		
I	13	14	1.0958	0.0028	5	0.0027		
I	13	15	1.0970	0.0040	5	0.0054		
I	13	16	1.5263	0.0183	1	0.0993		
I	16	17	1.0970	0.0040	5	0.0054		
I	16	18	1.0958	0.0028	5	0.0027		
I			RMS	BOND LENG	TH DEV	IATION =	1.095535E-02	
I			MAXIMUM	BOND LENG	TH DEV	IATION =	1.833676E-02	
1			I	RMS BOND L	ENGTH	CHANGE =	1.104900E-07	
1			MAXIN	MUM BOND L	ENGTH	CHANGE =	2.755805E-07	
1			TOT	FAL BOND S	TRAIN	ENERGY =	0.644689	
1								

(A-13): 計算結果の概略を表示した後に、分子構造に関する詳細な情報を選択された力場関数の相互作用 項毎に表示

!========================= ! !	YSIS					! ! !								
THERMODYNAMIC FUNCTIONS FOR Cyclohexane: Cyclohexane.mol TEMPERATURE (K) = 298.15 POINT GROUP OF MOLECULE = D3D SYMMETRY NUMBER = 6 ZERO POINT ENERGY (KCAL/MOL) = 105.0508														
SYMMETRY NUMBER = 6 ZERO POINT ENERGY (KCAL/MOL) = 105.0508 INTERNAL ENERGY ENTHALPY ENTROPY FREE ENERGY HEAT CAPACITY (KCAL/MOL) (KCAL/MOL) (CU) (KCAL/MOL) (CAL/MOL/K) (CAL/MOL) (KCAL/MOL) (CAL/MOL/K) (CAL/MOL) (CAL/MOL/K) (CAL/MOL/K) TRANSLATIONAL* 0.8887 1.4812 39.2017 -10.2068 4.9680 VIBRATIONAL 0.8887 0.8887 22.7814 -5.9036 2.9808 VIBRATIONAL# 106.7638 106.7638 8.4498 104.2445 16.4665 POTENTIAL -3.5609 -3.5609 0.0000 -3.5609 0.0000 MIXING 0.0000 0.0000 0.0000 0.0000 0.0000 MIXING 0.0000 0.0000 0.0000 0.0000 0.0000 TOTAL 104.9803 105.5728 70.4329 84.5732 24.4153														
! * INCLUDES RT/2 ! # INCLUDES ZERO : ! ! ENTHALPY FUNCTION ! FREE ENERGY FUNC	<pre>* INCLUDES RT/2 (0.296) FOR EACH IMAGINARY FREQUENCY. # INCLUDES ZERO POINT ENERGY. ENTHALPY FUNCTION (H - HO) / T = 13.6944 CAL/MOL/K FREE ENERGY FUNCTION - (G - HO) / T = 56.7385 CAL/MOL/K !</pre>													
THIS STRUCTURE H	THIS STRUCTURE HAS 0 IMAGINARY FREQUENCIES, 6 ZERO FREQUENCIES, AND 48 REAL FREQUENCIES. (A-15)													
: ! ! !================================	ZERO FRE	QUENCY CUTOFF =	0.10859136	(CM-1)		: ! !								

- (A-14): 熱力学的諸関数の詳細、指定された温度、最適化構造の対称性を考慮して、内部エネルギー、 エンタルピー、エントロピー、Gibbs 自由エネルギー、定圧熱容量に関する分配関数量が計算され る
- (A-15): 虚数振動、ゼロ振動、実振動の数6 個のゼロ振動と虚数振動がないことを確認すること

			-					DISPLACE	MENTS				
		MO	DE	1	2	3	4	5	6	7	8	9	10
FREQUENC	CY (CM**-	1)	240.21	240.21	392.80	473.98	473.98	613.13	763.03	819.66	819.66	849.63
	S	YMMET	RY	C1	C1	D3D	CI	CI	C3V	D3D	CI	CI	C1
ATOM	1	Х	-1.26267	-0.03554	0.00433	0.03609	-0.10587	0.05298	0.05984	0.08784	-0.03816	-0.00398	-0.06430
ATOM	1	Y	0.72901	-0.00778	-0.03683	-0.02084	0.00717	-0.08783	-0.03455	-0.05071	-0.01045	-0.04506	0.07322
ATOM	1	Z	0.22578	-0.08259	0.06808	0.06777	0.01890	-0.01781	-0.01661	-0.02466	-0.05641	0.03869	0.03844
ATOM	2	Х	0.0000	0.01349	-0.03609	0.00000	-0.01957	0.06525	0.00000	0.00000	-0.02145	0.04487	0.08117
ATOM	2	Y	1.45801	0.03264	0.01220	-0.04167	-0.12540	-0.03761	0.06910	-0.10143	-0.03043	-0.01455	0.01313
ATOM	2	Z	-0.22578	0.10026	0.03748	-0.06777	0.02488	0.00746	-0.01661	0.02466	-0.06171	-0.02950	-0.00547
ATOM	3	Х	-1.26267	0.02398	0.02658	0.03609	-0.05924	-0.10250	-0.05984	0.08784	-0.02706	-0.02720	-0.04361
ATOM	3	Y	-0.72901	-0.03003	0.02269	0.02084	0.04235	-0.07728	-0.03455	0.05071	0.04163	-0.02016	-0.08281
ATOM	3	Z	-0.22578	-0.01767	-0.10556	-0.06777	-0.00598	-0.02528	-0.01661	0.02466	0.00530	0.06819	-0.03297
ATOM	4	Х	-2.14619	0.01078	-0.02973	-0.00823	-0.05892	0.06012	-0.00859	0.12331	-0.13484	0.07218	-0.05148
ATOM	4	Y	1.23910	-0.02985	-0.01150	0.00475	0.03931	-0.02910	0.00496	-0.07119	0.05597	-0.07356	0.15075
ATOM	4	Z	-0.17419	-0.21515	0.17737	0.20485	-0.04765	0.04491	0.19475	-0.11851	0.24545	-0.16835	0.10263
ATOM	5	Х	-1.33651	-0.19204	0.07934	0.17607	-0.15805	0.09319	0.22449	-0.00831	0.23658	-0.16315	0.01621
ATOM	5	Y	0.77163	0.02135	-0.15440	-0.10165	0.02696	-0.12201	-0.12961	0.00480	-0.13754	0.09282	0.01909
ATOM	5	Z	1.31946	-0.09441	0.07783	0.08137	0.01302	-0.01227	0.00297	-0.03500	-0.03084	0.02115	0.04935
ATOM	6	Х	0.00000	0.01126	-0.03013	0.00000	0.00192	-0.00640	0.00000	0.00000	-0.01445	0.03022	0.27214
ATOM	6	Y	2.47821	-0.02945	-0.01101	0.00951	-0.09303	-0.02790	-0.00991	-0.14239	-0.15836	-0.07572	0.01706
ATOM	6	Z	0.17419	0.26118	0.09764	-0.20485	-0.06271	-0.01881	0.19475	0.11851	0.26852	0.12839	-0.01460
ATOM	7	Х	0.00000	0.04268	-0.11416	0.00000	-0.02332	0.07775	0.00000	0.00000	-0.00062	0.00131	0.06398
ATOM	7	Y	1.54327	0.21485	0.08032	-0.20331	-0.19790	-0.05936	0.25922	0.00959	0.29938	0.14314	-0.00064
ATOM	7	Ζ	-1.31946	0.11461	0.04285	-0.08137	0.01714	0.00514	0.00297	0.03500	-0.03373	-0.01613	-0.00702

(A-16)

(A-16): 振動数と振動モード 振動モードは、デカルト座標変位ベクトルとして表記される オプション指定で内部座標系表記も可能

1.2 力場パラメーターのカスタマイズ

対象の分子を計算するために必要な力場パラメーターが不足している場合や、既存のパラメーターの数値 を変更したい場合、ini ファイルに記載することで追加や変更を行うことが可能です。以下に金属錯体 [Ti(H₂O)₆]³⁺と酢酸 CH₃COOH を例にして説明します。

1.2.1 金属錯体[Ti(H₂O)₆]³⁺

[Ti(H₂O)₆]³⁺の入力構造と MDL-Mol 形式のデータを以下に示します。Ti³⁺のパラメーターが CONFLEX に搭 載されているパラメーターファイルには含まれていないため、このままでは計算できません。

Ti3+H206.mol

19 12 0 0 0 0 0.7679 -0.041 0.7679 1.938 0 0 0 0 0 0 0.0000 Ti 0 0 1.9383 0.0000 O 0.5879 H 0 0.1801 2.7479 0.0000 O -0.0216 H -0.0417 0 0 0 0 -0.8728 0.7679 -0.04171.9800 O -0.6393 0.1899 2.4600 Н 0 0 0 0 0 0 0 0 0.7679 0.0000 0 0.0000 O -0.6020 H 0.0000 O -0.8300 H -1.9800 O 0.1945 -2.5017 Ō Ő 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.2121 -0.0417 -1.6921 0.7679 0.0066 0 0 0 0 0 1.3468 0.5551 -0.6385 -2.4600 H -2.4600 H 0.1891 Ō Ō Ő Ō Ō Ō 0 0 0 0 1.3558 2.4183 -0.5879 H 0 0 1.3414 3.2279 -2.5017 0.7894 0.6020 H 0.0216 H 1.3460 -1.6921 0.5558 2.4600 H 0.8300 H 0 0 0 0 0 0 0 0 0 0 0 0 -0.0901 -1.6921 3 1 15 1 5 1 17 1 7 1 18 1 9 1 16 1 2 0 0 0 4 0 0 0 8 Ō Ō 11 19 13 14 1 1 1 0 0 Ō Õ 0 0

12 м END 0 0

そこで、iniファイルに以下のような記述を加えて Ti³⁺のパラメーターを設定します。

MMFF94S SET_EXT_ATOM_TYPE=(1,900) VDWATOM=(900,-,0.45,6.0,4.0,1.4) FRMCHG=(900,3,3.0)

ここで「SET_EXT_ATOM_TYPE=(1,900)」は、入力番号1番の原子(Ti³⁺)に対して原子タイプ番号900を 設定するキーワードです。「VDWATOM=(900,-,0.45,6.0,4.0,1.4)」は van der Waals 相互作用のパラメーター (数値は Fe²⁺と同じ)を、また「FRMCHG=(900,3,3.0)」は原子タイプ番号900でかつ形式電荷が+3の原子 に+3.0の電荷を持たせることをそれぞれ意味します。

最適化後の構造と座標データを示します。

CON	FLE	X	140	011	413	263	D	1	1	0	000	0	-	477	.60	875	5		0				
,	E =		477	7.6	09,	G	=	2.3	324	E-	07,	Ν	4(0)		ΜM	1FF	943	3 (2	01	0-1	2-0	4HG)
91	2	0		0							0	7	720	00									
-0	.00	00		0	.00	00		0	.00	000	Τi		0	1	0	0	0						
1	.16	503		0	.81	40		1	.41	74	0		0	0	0	0	0						
1	.98	869		1	.39	38		1	.40	08	Н		0	0	0	0	0						
-1	.16	503		-0	.81	40		1	.41	74	0		0	0	0	0	0						
-1	.15	501		-1	.69	32		1	.91	40	Н		0	0	0	0	0						
-1	.15	511		1	.64	10		0	.00	000	0		0	0	0	0	0						
-1	.97	45		1	. 92	12		-0	.51	.31	Н		0	0	0	0	0						
-1	.16	503		-0	.81	40		-1	.41	74	0		0	0	0	0	0						
-1	.14	68		-0	.80	45		-2	.42	271	Н		0	0	0	0	0						
1	.16	503		0	.81	40		-1	.41	74	0		0	0	0	0	0						
1	.98	36		0	.50	51		-1	.91	40	Н		0	0	0	0	0						
1	.15	511		-1	.64	10		-0	.00	000	0		0	0	0	0	0						
1	.97	45		-1	.92	12		0	.51	31	Н		0	0	0	0	0						
1	.13	344		-2	.51	06		-0	.51	.31	Н		0	0	0	0	0						
1	.14	68		0	.80	45		2	.42	271	Η		0	0	0	0	0						
-1	.98	869		-1	.39	38		-1	.40	08	Η		0	0	0	0	0						
-1	.98	36		-0	.50	51		1	.91	40	Η		0	0	0	0	0						
-1	.13	344		2	.51	06		0	.51	.31	Η		0	0	0	0	0						
1	.15	601		1	.69	32		-1	.91	40	Н		0	0	0	0	0						
2	3	1	0		C	1																	
21	5	1	0		C	1																	
1	5	1	0		C	1																	
1 1	7	1	0		C)																	
5	7	1	0		C)																	
51	8	1	0		C)																	
3	9	1	0		C	1																	
31	6	1	0		C)																	
) 1	1	1	0		C)																	
) 1	9	1	0		C	1																	
2 1	3	1	0		C	1																	
2 1	4	1	0		C	1																	
ΕN	D																						
	CON , , , , , , , , , , , , , , , , , , ,	CONFLE , E = , E =	CONFLEX ,E = - 9 12 0 -0.0000 1.1603 -1.1501 -1.1501 -1.1511 -1.9745 -1.1603 -1.1603 1.9836 1.1511 1.9745 1.1344 1.1468 -1.9869 -1.9869 -1.1344 1.1468 -1.9869 -1.1344 1.1501 2 3 1 2 15 1 4 5 1 5 7 1	CONFLEX 144 ,E = -47)2 0 -0.0000 1.9869 -1.1603 1.9869 -1.1501 -1.1501 -1.1501 -1.1503 -1.1603 -1.1603 -1.1603 1.9836 1.1511 1.9745 1.1344 1.1468 -1.9869 -1.9836 -1.1344 1.1501 2 3 1 0 4 5 1 0 4 5 1 0 5 7 1 0 5 7 1 0 5 7 1 0 5 18 1 0 3 9 1 0 3 9 1 0 3 1 0 2 1 1 0 2 1 1 0 END	$\begin{array}{c} \text{CONFLEX 14011.}\\ \textbf{,E} = -477.63\\ 912 & 0 & 0\\ -0.0000 & 0 & 0\\ 1.9869 & 1\\ -1.1603 & 0\\ 1.9869 & 1\\ -1.1603 & 0\\ -1.1501 & -1\\ -1.1511 & 1\\ -1.9745 & -1\\ -1.1603 & -0\\ -1.1468 & -0\\ -1.1468 & -0\\ 1.1603 & 0\\ 1.1511 & -1\\ 1.9745 & -1\\ 1.1344 & -2\\ 1.1686 & 0\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.9869 & -1\\ -1.1501 & 1\\ 2 & 1 & 0\\ -1.1501 & 1\\ 2 & 1 & 0\\ 5 & 7 & 1 & 0\\ 5 & 7 & 1 & 0\\ 5 & 7 & 1 & 0\\ 5 & 18 & 1 & 0\\ 3 & 9 & 1 & 0\\ 3 & 16 & 1 & 0\\ 0 & 19 & 1 & 0\\ 2 & 14 & 1 & 0\\ \end{array}$	$\begin{array}{c} \text{CONFLEX 14011413} \\ \text{,E} &= -477.609, \\ 912 & 0 & 0 \\ -0.0000 & 0.000 \\ 1.1603 & 0.81 \\ 1.9869 & 1.39 \\ -1.1603 & -0.81 \\ -1.1501 & -1.65 \\ -1.1511 & 1.64 \\ -1.9745 & 1.92 \\ -1.1603 & -0.81 \\ -1.1468 & -0.80 \\ 1.1603 & -0.81 \\ -1.9836 & 0.55 \\ 1.1511 & -1.64 \\ 1.99745 & -1.92 \\ 1.1344 & -2.51 \\ 1.1468 & 0.86 \\ -1.9869 & -1.39 \\ -1.9869 & -1.39 \\ -1.9869 & -1.39 \\ -1.9869 & -0.55 \\ 1.1501 & 1.69 \\ 2 & 3 & 1 & 0 & 0 \\ 4 & 5 & 1 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 2 & 14 & 1 & 0 & 0 \\ \end{array}$	$\begin{array}{c} \text{CONFLEX } 14011413263\\ \textbf{,E} = -477.609, \textbf{G}\\ 912 0 0\\ -0.0000 0.0000\\ 1.1603 0.8140\\ 1.9869 1.3938\\ -1.1603 -0.8140\\ -1.1501 -1.6932\\ -1.1511 1.6410\\ -1.9745 1.9212\\ -1.1603 -0.8140\\ -1.1468 -0.8045\\ 1.1603 0.8140\\ 1.9836 0.5051\\ 1.1511 -1.6410\\ 1.9745 -1.9212\\ 1.1344 -2.5106\\ 1.1468 0.8045\\ -1.9869 -1.3938\\ -1.9869 -0.5051\\ -1.1344 2.5106\\ 1.1601 0.0\\ 2 15 1 0 0\\ 4 5 1 0 0\\ 5 7 1 0 0\\ 5 7 1 0 0\\ 5 18 1 0 0\\ 3 9 1 0 0\\ 11 1 0 0\\ 0 19 1 0 0\\ 2 14 1 0 0\\ \text{END} \end{array}$	$\begin{array}{c} \text{CONFLEX} & 140114132630\\ \textbf{,E} = -477.609, \textbf{G} = \\ 912 & 0 & 0\\ -0.0000 & 0.0000\\ 1.1603 & 0.8140\\ 1.9869 & 1.3938\\ -1.1603 & -0.8140\\ -1.1501 & -1.6932\\ -1.1501 & -1.6932\\ -1.1501 & -1.6932\\ -1.1603 & -0.8140\\ -1.1468 & -0.8045\\ 1.1603 & -0.8140\\ -1.1468 & -0.8045\\ 1.1603 & 0.5051\\ 1.1511 & -1.6410\\ 1.9836 & 0.5051\\ 1.1511 & -1.6410\\ 1.9745 & -1.9212\\ 1.1344 & -2.5106\\ 1.1468 & 0.8045\\ -1.9869 & -1.3938\\ -1.9869 & -1.3938\\ -1.9836 & -0.5051\\ -1.1344 & 2.5106\\ 1.11501 & 1.6932\\ 2 & 3 1 & 0 & 0\\ 2 & 15 1 & 0 & 0\\ 4 & 5 1 & 0 & 0\\ 4 & 5 1 & 0 & 0\\ 4 & 5 1 & 0 & 0\\ 5 & 18 1 & 0 & 0\\ 5 & 18 1 & 0 & 0\\ 3 & 9 1 & 0 & 0\\ 3 & 16 1 & 0 & 0\\ 0 & 19 1 & 0 & 0\\ 2 & 14 1 & 0 & 0\\ \text{END} \end{array}$	$\begin{array}{c} \text{CONFLEX } 14011413263D 1 \\ \textbf{,E} = -477.609, \textbf{G} = 2.3 \\ 912 0 0 \\ -0.0000 0.0000 0 \\ 1.1603 0.8140 1 \\ 1.9869 1.3938 1 \\ -1.1603 -0.8140 1 \\ -1.1501 -1.6932 1 \\ -1.1501 -1.6932 1 \\ -1.1511 1.6410 0 \\ -1.9745 1.9212 -0 \\ 0.8140 -1 \\ -1.1603 -0.8140 -1 \\ -1.1603 -0.8140 -1 \\ 1.1603 0.8140 -1 \\ 1.9836 0.5051 -1 \\ 1.9836 0.5051 -1 \\ 1.9836 0.5051 -1 \\ 1.1511 -1.6410 -0 \\ 1.9745 -1.9212 0 \\ 0.8140 -1 \\ -1.19836 0.5051 -1 \\ 1.1511 -1.6410 0 \\ 1.9745 -1.9212 0 \\ 1.1344 -2.5106 0 \\ 1.1344 -2.5106 0 \\ 1.1468 0.8045 2 \\ -1.9869 -1.3938 -1 \\ -1.1384 2.5106 0 \\ 1.1501 1.6932 -1 \\ 2 3 1 0 0 \\ 2 15 1 0 0 \\ 4 5 1 0 0 \\ 4 5 1 0 0 \\ 5 18 1 0 0 \\ 5 18 1 0 0 \\ 3 9 1 0 0 \\ 0 11 1 0 0 \\ 0 19 1 0 0 \\ 2 13 1 0 0 \\ 2 14 1 0 0 \\ \text{END} \end{array}$	$\begin{array}{c} \text{CONFLEX } 14011413263D 1 \\ \text{,E} = -477.609, \text{ G} = 2.324 \\ 912 0 0 \\ -0.0000 0.0000 0.00 \\ 1.1603 0.8140 1.41 \\ 1.9869 1.3938 1.44 \\ -1.1603 -0.8140 1.41 \\ -1.1501 -1.6932 1.91 \\ -1.1501 -1.6932 1.91 \\ -1.1501 -1.6932 1.91 \\ -1.1501 -1.6932 1.91 \\ -1.1603 -0.8140 -1.41 \\ -1.1603 -0.8140 -1.41 \\ -1.1468 -0.8045 -2.42 \\ 1.1603 0.8140 -1.41 \\ -1.9866 0.5051 -1.91 \\ 1.9866 0.5051 -1.91 \\ 1.1511 -1.6410 -0.00 \\ 1.9745 -1.9212 0.51 \\ 1.1468 0.8045 2.42 \\ -1.9869 -1.3938 -1.40 \\ -1.9869 -0.5051 1.91 \\ -1.9869 -0.5051 1.91 \\ -1.1344 2.5106 0.51 \\ 1.1501 1.6932 -1.91 \\ 2 3 1 0 0 \\ 4 5 1 0 0 \\ 4 5 1 0 0 \\ 5 7 1 0 0 \\ 5 18 1 0 0 \\ 5 18 1 0 0 \\ 3 9 1 0 0 \\ -19 1 0 0 \\ -19 1 0 0 \\ -19 1 0 0 \\ -19 1 0 0 \\ -19 1 0 0 \\ -19 1 0 0 \\ -10 1 1 0 0 \\ -10 1 1 0 0 \\ -11 1 0 \\ -11 $	$\begin{array}{c} \text{CONFLEX } 14011413263D 1 1.0,\\ \textbf{F} = -477.609, \textbf{G} = 2.324\text{E}-912 0 0 \\ -0.0000 0.0000 0.0000 \\ 1.1603 0.8140 1.4174 \\ 1.9869 1.3938 1.4008 \\ -1.1603 -0.8140 1.4174 \\ -1.1501 -1.6932 1.9140 \\ -1.1511 1.6410 0.0000 \\ -1.9745 1.9212 -0.5131 \\ -1.1603 -0.8140 -1.4174 \\ -1.1603 -0.8140 -1.4174 \\ -1.1468 -0.8045 -2.4271 \\ 1.1603 0.8140 -1.4174 \\ -1.9866 0.5051 -1.9140 \\ 1.511 -1.6410 -0.0000 \\ 1.9745 -1.9212 0.5131 \\ 1.1344 -2.5106 -0.5131 \\ 1.1468 0.8045 2.4271 \\ -1.9869 -1.3938 -1.4008 \\ -1.9836 -0.5051 1.9140 \\ -1.1344 2.5106 0.5131 \\ 1.1501 1.6932 -1.9140 \\ 2 3 1 0 0 \\ 2 15 1 0 0 \\ 4 5 1 0 0 \\ 5 7 1 0 0 \\ 5 7 1 0 0 \\ 5 18 1 0 0 \\ 3 9 1 0 0 \\ 2 15 1 0 0 \\ 3 9 1 0 0 \\ 2 15 1 0 0 \\ 3 9 1 0 0 \\ 2 13 1 0 0 \\ 2 14 1 0 0 \\ \text{END} \end{array}$	$\begin{array}{c} \text{CONFLEX } 14011413263D 1 & 1.0000\\ \text{,E} = -477.609, \text{G} = 2.324\text{E-07},\\ 912 0 & 0 & 0\\ 0.0000 & 0.0000 & 0\\ 1.9609 & 1.3938 & 1.4408 \text{H} \\ -1.1603 & 0.8140 & 1.4174 & 0\\ 1.9869 & 1.3938 & 1.4008 \text{H} \\ -1.1501 & -1.6932 & 1.9140 \text{H} \\ -1.1501 & -1.6932 & 1.9140 \text{H} \\ -1.1501 & -0.8140 & -1.4174 & 0\\ -1.1603 & 0.8140 & -1.4174 & 0\\ -1.1468 & -0.8045 & -2.4271 \text{H} \\ 1.1603 & 0.8140 & -1.4174 & 0\\ -1.9866 & 0.5051 & -1.9140 \text{H} \\ 1.511 & -1.6410 & -0.0000 & 0\\ 1.9745 & -1.9212 & 0.5131 \text{H} \\ 1.1344 & -2.5106 & -0.5131 \text{H} \\ 1.1344 & -2.5106 & -0.5131 \text{H} \\ 1.1344 & 2.5106 & 0.5131 \text{H} \\ 1.1344 & 0.0 & 0\\ 2 15 1 0 & 0 & 0\\ 4 5 1 0 & 0 & 0\\ 4 5 1 0 & 0 & 0\\ 4 5 1 0 & 0 & 0\\ 5 18 1 0 & 0 & 0\\ 5 18 1 0 & 0 & 0\\ 3 16 1 0 & 0 & 0\\ 2 13 1 0 & 0 & 0\\ 2 13 1 0 & 0 & 0\\ 2 14 1 0 & 0 & 0\\ \text{END} \end{array}$	$\begin{array}{c} \text{CONFLEX } 14011413263D 1 1.00000\\ \textbf{,E} = -477.609, \textbf{G} = 2.324E-07, \textbf{N}\\ 9 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mbox{CONFLEX} 14011413263D 1 1.00000 -477\\ \mbox{,E} = -477.609, G = 2.324E-07, M(0)\\ 912 0 0 0 0 V2000\\ -0.0000 0.0000 Ti 0 1\\ 1.1603 0.8140 1.4174 0 0 0\\ -1.1603 -0.8140 1.4174 0 0 0\\ -1.1501 -1.6932 1.9140 H 0 0\\ -1.1603 -0.8140 -1.4174 0 0 0\\ -1.1603 -0.8140 -1.4174 0 0 0\\ -1.1603 0.8140 -1.4174 0 0 0\\ -1.1603 0.8140 -1.4174 0 0 0\\ 1.1603 0.8140 -1.4174 0 0 0\\ 1.1603 0.8140 -1.4174 0 0 0\\ 1.1511 -1.6410 -0.0000 0 0 0\\ 1.9836 0.5051 -1.9140 H 0 0\\ 1.1344 -2.5106 -0.5131 H 0 0\\ 1.1344 -2.5106 -0.5131 H 0 0\\ -1.9869 -1.3938 -1.4008 H 0 0\\ -1.9836 -0.5051 1.9140 H 0 0\\ -1.1344 2.5106 0.5131 H 0 0\\ 1.11501 1.6932 -1.9140 H 0 0\\ 2 3 1 0 0 \\ 2 3 1 0 0 \\ 4 5 1 0 0 \\ 4 5 1 0 0 \\ 5 7 1 0 0 \\ 5 7 1 0 0 \\ 3 9 1 0 0 \\ 2 15 1 0 0 \\ 3 9 1 0 0 \\ 2 11 1 0 0 \\ 2 14 1 0 0 \\ \mbox{END} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

1.2.2 酢酸 CH3COOH

CH₃COOHの入力構造とMDL-Mol形式のデータを以下に示します。

CH₃COOH は原子タイプやパラメーターを指定しなくても計算することが可能ですが、以下に示す内容を ini ファイルに記述して計算に必要なパラメーターを全て指定することで、同じ結果を得ることができます。 MMFF94S

SET EXT ATOM TYPE=(1,903) SET_EXT_ATOM_TYPE=(2,907) SET EXT ATOM TYPE=(3,906) SET EXT ATOM TYPE=(4,924) SET EXT ATOM TYPE=(5,901) SET_EXT_ATOM_TYPE=(6,905) SET EXT ATOM TYPE=(7,905) SET EXT ATOM TYPE=(8,905) STRETCH=(901,903,1,4.190,1.492) STRETCH=(901,905,1,4.766,1.093) STRETCH=(903.906.1.5.801.1.355) STRETCH=(903,907,2,12.950,1.222) STRETCH=(906,924,1,7.403,0.981) BEND=(903,901,905,0,0.650,108.385) BEND=(905,901,905,0,0.516,108.836) BEND=(901,903,906,0,1.043,109.716) BEND=(901,903,907,0,0.938,124.410) BEND=(906,903,907,0,1.155,124.425) BEND=(903,906,924,0,0.583,111.948) TORSION=(905,901,903,906,0,6,0.0,0.624,0.330) TORSION=(905,901,903,907,0,6,0.659,1.407,0.308) TORSION=(901,903,906,924,0,6,-1.166,-5.078,-0.545) TORSION=(907,903,906,924,0,6,1.662,-6.152,-0.058) OPLANE=(901,903,906,907,0.141) STRBND=(903,901,905,0.157,0.115) STRBND=(905,901,905,0.115,0.115) STRBND=(901,903,906,0.338,0.732) STRBND=(901,903,907,0.154,0.856) STRBND=(906,903,907,0.494,0.578) STRBND=(903,906,924,0.215,0.064) VDWATOM=(901,-,1.05,2.49,3.89,1.282) VDWATOM=(903,-,1.10,2.49,3.89,1.282) VDWATOM=(905,-,0.25,0.80,4.20,1.209) VDWATOM=(906,A,0.70,3.15,3.89,1.282) VDWATOM=(907,A,0.65,3.15,3.89,1.282) VDWATOM=(924, D, 0.15, 0.80, 4.20, 1.209) BNDCHG=(901,903,-0.061) BNDCHG=(903,906,-0.15) BNDCHG=(903,907,-0.57) BNDCHG=(906,924,0.50)

2. 配座探索

ここでは CONFLEX による配座探索の内容を見ていきます。入力構造ファイルは、前章の構造最適化により得られた Cyclohexane の最適化構造ファイル Cyclohexane-F.mol を使用します。

2.1 配座探索の設定

配座探索に必須のキーワードは「CONFLEX」です。例えば

MMFF94S CONFLEX

あるいは

MMFF94S CONFLEX SEACH=ENERGY SEL=1.0

を設定ファイル Cyclohexane-F.ini に記述します。2つの設定は同じ計算を実行します。それぞれのキーワードの意味は、次の通りです。

- MMFF94s 力場パラメーターを使う
- 配座空間探索を行なう
- 配座空間の探索上限値は、エネルギー値で決める
- 配座探索のエネルギー上限値は、1.0 kcal/mol とする

この計算が終了した場合、最安定配座から 1.0 kcal/mol までの領域が網羅されたことになります。

2.2 配座探索計算の出力ファイル

配座探索計算では、構造最適化計算の時と同じ3つの出力ファイル (Cyclohexane-F-F.mol、 Cyclohexane-F.bsf、Cyclohexane-F.bso)の他に、以下のファイルが新たに作られます:

Cyclohexane-F.fxf

CONFLEX の配座探索計算において見出された配座が、このファイルに蓄えられます。このため CONFLEX では最初に実行した際に作成された再実行ファイルを利用し、拡張された配座空間のみを探索す ることができます。なおこのファイルは、再度配座空間の探索を行なう時に必要です。

1.629381 18		
2		
1.0000000000000		
5.200		
1		
Т		
F		
0		
F		
6		
D3D		
-3.56093559779316		
1.218839031731353E-008		
0.888728442903559	1.48121407150593	39.2016708626923
-10.2067640962058	4.96801633911096	0.888728442903559
0.888728442903559	22.7814483091113	-5.90356037045796
2.98080980346657	106.763799300790	106.763799300790
8.44979324215582	104.244493445641	16.4664742666461
-3.56093559779316	-3.56093559779316	0.0000000000000000E+000
-3.56093559779316	0.0000000000000000E+000	0.0000000000000000E+000
0.000000000000000E+000	0.0000000000000000E+000	0.0000000000000000E+000
0.0000000000000000E+000	104.980320588804	105.572806217407
70.4329124139594	84.5732333811846	24.4153004092236
105.050755971549	13.6944016221737	0.000000000000000000E+000
56.7385107917857	6.00000000000000	
116.679471906760	116.679471909061	204.596054137536
0.0000000000000000E+000	0.0000000000000000E+000	
-1.26267372390472	0.729005014363425	0.225782342198168
-4.310507506488648E-011	1.45801002881044	-0.225782342047940
-1 26267372385552	-0 729005014346269	-0 225782342249144

CONFLEX の配座探索計算において、**CONFLEX** が認識した分子の定義、Flip-Flap 等の定義、そして配 座探索において既に見出された配座との関係に関する検索結果が出力されます。

***** START LOOP OF CONFLEX SEARCH *****

18 TRIAL STRUCUTRES GENERATED FROM 1 INITIAL STRUCTURE(S).

	COUNT OF STACKED IN:	ITIAL	STRUCUTRE	ES:	1						
	INITIAL STRUCTURE -		IDN:	1,	EGY:		-3.5609				
	NUMBER OF TRIAL CONH	FORMAT	FIONS GENE	ERATED	: 18						
	NUMBER OF INITIAL ST	FRUCTU	JRES LEFT:	: 1							
	A NEW CONFORMER -	IFT:	21, IDN:	2,	EGY:		2.3688,	GRMS:	0.12E-07,	TIME:	0.10
	IDENTICAL OLD ONE -	IFT:	22, IDN:	2,	EGY:		2.3688,	GRMS:	0.44E-08,	TIME:	0.10
	IDENTICAL OLD ONE -	IFT:	23, IDN:	2,	EGY:		2.3688,	GRMS:	0.89E-07,	TIME:	0.10
	IDENTICAL OLD ONE -	IFT:	24,IDN:	2,	EGY:		2.3688,	GRMS:	0.17E-07,	TIME:	0.10
	IDENTICAL OLD ONE -	IFT:	25,IDN:	2,	EGY:		2.3688,	GRMS:	0.13E-06,	TIME:	0.10
	IDENTICAL OLD ONE -	IFT:	26, IDN:	2,	EGY:		2.3688,	GRMS:	0.32E-07,	TIME:	0.10
	REPLACED OLD ONE -	IFT:	10, IDN:	2,	EGY:		2.3688,	GRMS:	0.10E-07,	TIME:	0.08
	IDENTICAL OLD ONE -	IFT:	20, IDN:	1,	EGY:		-3.5609,	GRMS:	0.49E-08,	TIME:	0.09
	IDENTICAL OLD ONE -	IFT:	10, IDN:	2,	EGY:		2.3688,	GRMS:	0.72E-07,	TIME:	0.09
	IDENTICAL OLD ONE -	IFT:	20,IDN:	2,	EGY:		2.3688,	GRMS:	0.72E-08,	TIME:	0.03
	IDENTICAL OLD ONE -	IFT:	10, IDN:	2,	EGY:		2.3688,	GRMS:	0.11E-07,	TIME:	0.09
	IDENTICAL OLD ONE -	IFT:	20, IDN:	1,	EGY:		-3.5609,	GRMS:	0.41E-06,	TIME:	0.09
	IDENTICAL OLD ONE -	IFT:	10, IDN:	2,	EGY:		2.3688,	GRMS:	0.16E-06,	TIME:	0.08
	REPLACED OLD ONE -	IFT:	20, IDN:	1,	EGY:		-3.5609,	GRMS:	0.12E-07,	TIME:	0.09
	IDENTICAL OLD ONE -	IFT:	10, IDN:	2,	EGY:		2.3688,	GRMS:	0.26E-07,	TIME:	0.09
	IDENTICAL OLD ONE -	IFT:	20,IDN:	2,	EGY:		2.3688,	GRMS:	0.15E-06,	TIME:	0.09
	IDENTICAL OLD ONE -	IFT:	10, IDN:	2,	EGY:		2.3688,	GRMS:	0.11E-06,	TIME:	0.09
	IDENTICAL OLD ONE -	IFT:	20,IDN:	1,	EGY:		-3.5609,	GRMS:	0.71E-07,	TIME:	0.09
1	NUMBER OF CONFORMERS	FOUNI	O IN THIS	CYCLE	:	1					

Cyclohexane-F.ls1

CONFLEX の配座探索計算において見出された配座リストが出力されます。.ls1 では立体エネルギーの安定な順に並べられ、それぞれの列は以下の内容を示しています。

項目名	内容
NO.	立体エネルギーの安定な順位
CONF.ID	探索により見出された順に付けられた番号
ORIGINAL STERIC E	立体エネルギー(kcal/mol)
DELTA E	最安定配座からの立体エネルギー差(kcal/mol)
DISTRIBUTION	立体エネルギーを元に Boltzmann 分布により求めた配座分布
INIT.	初期構造として使用したかどうかを示すフラグ
REOPT.	すでに構造最適化が為されているか、またはこの配座探索計算で構造最適化を行
	ったかどうかを示すフラグ
NO. NEG.	基準振動解析により得られた負の固有値の数

CONFLEX が配座探索時に初期配座として使用したものには、INIT.列に"T"と"*"で示します。"T"は初期 配座として既に用いたという意味であり、"*"はこの配座探索計算において初期配座として用いたことを意 味します。また CONFLEX での配座探索中の構造最適化については、"F"と"+"で示します。"F"は構造最 適が既に行われたことを意味し、"+"はこの配座探索計算において構造最適化をした新規配座であることを 意味します。

また NO. NEG は、各配座における基準振動計算を行ない、その固有値が正であれば "0" で示し、その固 有値が負であれば "1" で示されます。固有値が負を示す場合には、その分子における配座間を結ぶ重要な遷 移状態を示すと考えられます。尚、CONFLEX で得られた遷移状態については正確を期すために、必ず分子 軌道法で遷移状態における構造最適化、基準振動解析及び固有反応座標計算による遷移状態の確認をするこ とをおすすめします。

==										
! ! !	LIST (OF CONFORME	ERS (LIST FO	RM 1)						
	DATE: Cycloł EMPIRI FORCE TOTAL STERIC	2012/08/08 nexane-F: (ICAL FORMUI FIELD: MM NUMBER OF C ENERGY:	B TIME: 1 Cyclohexane. JA: C6H12 MFF94S(2010- CONFORMERS MIN= -3	6:58:55.28 mol MW = 12-04HG) FOUND: .5609	84.094 2 MAX=	2.3688	ΓA	/ERAGE=	-3.5607	
	DEFIN: NG CC DI DI II RH NG	ITIONS: D. = INDEX DNF. ID = 1 TERRIC E = S ELTA E = F ISTRIBUTION NIT. = FLA "*" = INI 20PT. = FIN D. NEG. = N	(NUMBER IN DENTIFICATI STERIC ENERG RELATIVE STE AG OF THE IN DICATES THE DICATES THE DUCATES THE NUMBER OF NE	THE ORDER ON NUMBER Y OF EACH RIC ENERGY ITIAL STRU INITIAL STRU INITIAL ST NEW CONFOF GATIVE EIG	OF STERIC OF EACH CC CONFORMER (FROM THE JO ON STERIC JCTURE THAT FRUCTURE OF RUCTURE THAT RUERS FOUNI SEN VALUES	ENERGY INFORMER (KCAL/M GLOBAL : ENERGY HAD BE ED IN T HAT HAD) IN THI OF EACH	(OL) ENERGY (%) EN ALF HIS JOB BEEN (S JOB CONF((MINIMU READY US DB DFTIMIZE DRMER	M (KCAL/MOL) ED D AGAIN	
	NO.	CONF. ID	ORIGINAL STERIC E	delta e	DISTRI BUTION	:- I I	NIT.	REOPT.	NO. NEG.	
	1 2	00001 00002	-3.5609 2.3688	0.0000 5.9297	99.995 0.004	5 5	T* F	F+ F+	0 0	
M	IINIMUM	ENERGY:	-3.5609	KCAL/MOL	(BASED ON	THE BOL	TZMANI	 		

Cyclohexane-F.ls2

配座探索計算において、得られた配座が新しいものであるかどうかの判定に用いた、2 面角の値が出力さ れます。

! DE] ! ! ! !	FINITIONS D 1 = D 2 = D 3 = D 4 = D 5 = D 6 =	OF TORSION 3 - 1 - 1 - 2 - 2 - 16 - 16 - 13 - 13 - 8 - 8 - 3 -	ANGLES: 2 - 16 16 - 13 13 - 8 8 - 3 3 - 1 1 - 2						! ! ! ! !			
NO	. ID	STERIC E	DELTA E	DISTRIB.	D 1	D 2	D 3	D 4	D 5	D 6	 	
1 2	00001 00002	-3.5609 2.3688	0.0000 5.9297	99.9955 0.0045	-54.26 60.11	54.26 -29.17	-54.26 -29.17	54.26 60.11	-54.26 -29.17	54.26 -29.17		

Cyclohexane-F.ls3

-3.5607 0.0003

AVERAGE:

配座探索計算により得られた配座の座標データが出力されます。このファイルは、CONF. ID、立体エネ ルギー、立体エネルギーに基づく配座分布、配座の座標と原子リストから構成されます。

00001				E= -	3.5609; P=	99.9955	18		120.
-1.26267	0.72901	0.22578	1		0.00000	1.45801	-0.22578	1	
-1.26267	-0.72901	-0.22578	1		-2.14619	1.23910	-0.17419	5	
-1.33651	0.77163	1.31946	5		0.00000	2.47821	0.17419	5	
0.00000	1.54327	-1.31946	5		0.00000	-1.45801	0.22578	1	
-2.14619	-1.23910	0.17419	5		-1.33651	-0.77163	-1.31946	5	
0.00000	-2.47821	-0.17419	5		0.00000	-1.54327	1.31946	5	
1.26267	-0.72901	-0.22578	1		2.14619	-1.23910	0.17419	5	
1.33651	-0.77163	-1.31946	5		1.26267	0.72901	0.22578	1	
1.33651	0.77163	1.31946	5		2.14619	1.23910	-0.17419	5	
STERIC E.=	-3.56094		т	F	,				
00002				E =	2.3688; P=	0.0045	18		120.
0.67151	1.22910	0.35868	1		-0.67151	1.22910	-0.35868	1	
1.50939	0.00000	0.00000	1		0.49926	1.24725	1.44233	5	
1.23203	2.13933	0.11739	5		-0.49926	1.24725	-1.44233	5	
-1.23203	2.13933	-0.11739	5		0.67151	-1.22910	-0.35868	1	
2.16866	0.23360	-0.84486	5		2.16866	-0.23360	0.84486	5	
1.23203	-2.13933	-0.11739	5		0.49926	-1.24725	-1.44233	5	
-0.67151	-1.22910	0.35868	1		-1.23203	-2.13933	0.11739	5	
-0.49926	-1.24725	1.44233	5		-1.50939	0.00000	0.00000	1	
-2.16866	-0.23360	-0.84486	5		-2.16866	0.23360	0.84486	5	
STERIC E.=	2.36879		F	F					

Cyclohexane-F.ls4

.ls1 ファイルと同様に配座リストが出力されます。.ls1 では立体エネルギーの安定な順に出力されていますが、.ls4 では自由エネルギーの順に並べられています。それぞれの列は以下の内容を示しています。

項目名	内容
NO.	立体エネルギーの安定な順位
CONF.ID	探索により見出された順に付けられた番号
HE	エンタルピー(kcal/mol)
TSE	エントロピーと温度の積(kcal/mol)
GE	Gibbs の自由エネルギー
DGE	最安定配座からの Gibbs 自由エネルギー差(kcal/mol)
GPOP	Gibbs 自由エネルギーを元に Boltzmann 分布により求めた配座分布
SE	立体エネルギー(kcal/mol)
DSE	最安定配座からの立体エネルギー差(kcal/mol)
EPOP	立体エネルギーを元に Boltzmann 分布により求めた配座分布
CHIRAL	キラリティーを有するかどうかのフラグ
SYM. NUM.	対称数
POINT GROUP	点群の記号
INIT.	初期構造として使用したかどうかを示すフラグ
REOPT.	すでに構造最適化が為されているか、またはこの配座探索計算で構造最適化を行
	ったかどうかを示すフラグ
NO. NEG.	基準振動解析により得られた負の固有値の数

μı	ST OF CON	FORMERS (LI	ST FORM 4)					
	mp. 0010/	00/00	ME. 16.50.5	E 20				
DF C	IE: 2012/	00/00 II.	ME: 10:30:5	JJ.20				
C Y	DIDICAL F	OPMULA: C6	u12 TROTORE	C DDECENT	MM -	84 094		
FC	BCE EIEID	• MMFF949(2010-12-04	IC)	1-144 -	04.004		
TC	TAL NUMBE	R OF CONFOR	MERS FOUND.	2				
ST	ERIC ENER	GY:	EMIN=	-3.5609	EMAX=	2.3688	EAVE=	-3.5607
GI	BB'S FREE	ENERGY:	GMIN=	84.5732	GMAX=	88.7991	GAVE=	84.5766
MI	XING ENER	GIES:	HMIX=	105.5772	TSMIX=	21.0044	GMIX=	84.5728
ΜI	XING HEAT	CAPACITY:	CPMIX=	24.4157				
ΤE	MPERATURE	: 25.00	CELSIUS (298.15 KEI	LVIN)			
DE								
DE	FINITIONS	:	TN THE ODE			DOLC FREE	ENEDCY	
DE	FINITIONS NO. = I	: NDEX NUMBER	IN THE ORE	DER OF THE	TOTAL GIB	BS'S FREE	ENERGY	
DE	FINITIONS NO. = I CONF. I HE =	: NDEX NUMBER D = IDENTIF ENTHALPY C	IN THE ORE	DER OF THE IBER OF EACH (TOTAL GIB CH CONFORM	BS'S FREE ER (KCAL/MOL)	ENERGY	
DE	FINITIONS NO. = I CONF. I HE = TSE =	: NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M	IN THE ORE ICATION NUM ONTRIBUTION	DER OF THE IBER OF EAG N OF EACH (7 TEMP.) C	TOTAL GIB CH CONFORM CONFORMER	BS'S FREE ER (KCAL/MOL)	ENERGY	R (KCAL/MOI
DE	FINITIONS NO. = I CONF. I HE = TSE = GE =	: NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB	IN THE ORU ICATION NUM ONTRIBUTION ULRPLIED BY 'S FREE ENE	DER OF THE IBER OF EACH I OF EACH (TEMP.) CC IRGY OF EAC	TOTAL GIE CH CONFORME CONFORMER DNTRIBUTIC CH CONFORM	BS'S FREE ER (KCAL/MOL) N OF EACH ER (KCAL/M	ENERGY CONFORMER IOL)	R (KCAL/MOI
DE	FINITIONS NO. = I CONF. I HE = TSE = GE = DGE =	: NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB RELATIVE G	IN THE ORI ICATION NUM ONTRIBUTION ULRPLIED BY 'S FREE ENE IBB'S FREE	DER OF THE IBER OF EACH I OF EACH (TEMP.) CO IRGY OF EAC ENERGY OF	TOTAL GIE CH CONFORME CONFORMER DNTRIBUTIC CH CONFORM EACH CONF	BBS'S FREE IER (KCAL/MOL) NOF EACH IER (KCAL/M ORMER (KCA	ENERGY CONFORMER MOL) AL/MOL)	R (KCAL/MOI
DE	FINITIONS NO. = I CONF. I HE = TSE = GE = DGE = GEPOP =	: NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB RELATIVE G DISTRIBUTI	IN THE ORI ICATION NUM ONTRIBUTION ULRPLIED BY 'S FREE ENE IBB'S FREE ON IN GIBB'	DER OF THE HEER OF EACH (* TEMP.) CO ERGY OF EAC ENERGY OF S FREE ENI	TOTAL GIE CH CONFORME CONFORMER DNTRIBUTIC CH CONFORM EACH CONF ERGY (%)	DBS'S FREE IER (KCAL/MOL) NOF EACH IER (KCAL/M 'ORMER (KCA	ENERGY CONFORMER MOL) MOL)	R (KCAL/MOI
DE	FINITIONS NO. = I CONF. I HE = TSE = GE = DGE = GEPOP = SE =	: NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB RELATIVE G DISTRIBUTI STERIC ENE	IN THE ORI ICATION NUM ONTRIBUTION ULRPLIED BY 'S FREE ENE IBB'S FREE ON IN GIBB' RGY OF EACE	DER OF THE MBER OF EACH (V OF EACH (V TEMP.) CO RGY OF EAC ENERGY OF S FREE ENI 4 CONFORMED	TOTAL GIB CH CONFORM CONFORMER DNTRIBUTIC CH CONFORM EACH CONF ERGY (%) R (KCAL/MC	BBS'S FREE ER (KCAL/MOL) N OF EACH ER (KCAL/M 'ORMER (KCA DL)	ENERGY CONFORMEN IOL) LL/MOL)	R (KCAL/MOI
DE	SFINITIONS NO. = I CONF. I HE = GE = DGE = GEPG = SE = DSE =	: NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB RELATIVE G DISTRIBUTI STERIC ENE RELATIVE S	IN THE ORL TICATION NUM ONTRIBUTION ULRPLIED BY 'S FREE ENE IBB'S FREE ON IN GIBB' RGY OF EACH TERIC ENERG	DER OF THE IBER OF EAG I OF EACH (TEMP.) CC RGY OF EAG ENERGY OF S FREE ENI I CONFORMEI GY FROM THI	TOTAL GIE CH CONFORMER CONFORMER DNTRIBUTIC CH CONFORM EACH CONF ERGY (%) X (KCAL/MC E GLOBAL E	NBS'S FREE IER (KCAL/MOL) N OF EACH IER (KCAL/M YORMER (KCA YL) NERGY MINI	ENERGY CONFORMEN MOL) LL/MOL)	R (KCAL/MOI
DE	FINITIONS NO. = I CONF. I HE = TSE = GE = GEPOP = GEPOP = SE = DSE = SEPOP =	NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB RELATIVE G DISTRIBUTI STERIC ENE RELATIVE S DISTRIBUTI	IN THE ORI ICATION NUM ONTRIBUTION ULRPLIED BY IS FREE ENE IBB'S FREE ON IN GIBB' RGY OF EACE TERIC ENERG ON BASED ON	DER OF THE HEER OF EACH (TEMP.) CC ENERGY OF EACH S FREE ENI H CONFORMEN Y FROM THI S STERIC EN	TOTAL GIE CH CONFORMER ONTFIBUTIC CH CONFORM EACH CONF R (KCAL/MC 5 GLOBAL E VERGY (%)	NBS'S FREE IER (KCAL/MOL) NO F EACH IER (KCAL/MOL) ORMER (KCA NORMER (KCA NL) INERGY MINI	ENERGY CONFORMER IOL) IL/MOL) XMUM (KCAI	R (KCAL/MOI L/MOL)
DE	FINITIONS NO. = I CONF. I HE = TSE = DGE = GEPOP = SE = SEPOP = CHIRAL	: NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB RELATIVE G DISTRIBUTI STERIC ENE RELATIVE S DISTRIBUTI = CHIR	. IN THE ORI ICATION NUM ONTRIBUTION ULRPLIED BY 'S FREE ENE IBB'S FREE ON IN GIBB' RGY OF EACF TERIC ENERG ON BASED ON ALITY EXIST	DER OF THE HEER OF EACH (OF EACH (TEMP.) C(JRGY OF EAC ENERGY OF S FREE ENI H CONFORMEI GY FROM THI STERIC EI CANCE OF EZ	TOTAL GIE CH CONFORMER DNTRIBUTIC CH CONFORME ERGY (%) R (KCAL/MC E GLOBAL E GERGY (%) ACH CONFOR	DBS'S FREE LER (KCAL/MOL) NO OF EACH LER (KCAL/M ORMER (KCA DL) INERGY MINI IMER	ENERGY CONFORMEN MOL) LL/MOL) MUM (KCAI	R (KCAL/MOI L/MOL)
DE	FINITIONS NO. = I CONF. I HE = GE = GE = GEPOP = SE = SE = SEPOP = CHIRAL SYM. NU	: NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB RELATIVE G DISTRIBUTI STERIC ENE RELATIVE S DISTRIBUTI M. = SYMM	. IN THE ORI ICATION NUM ONTRIBUTION 'S FREE ENE IIBB'S FREE ON IN GIBB' RGY OF EACT TERIC ENERG ON BASED ON ALITY EXIST ETRY NUMBEF	DER OF THE IBER OF EACH () OF EACH () () TEMP.) CO GRGY OF EAC ENERGY OF S FREE ENI I CONFORMEI SY FROM THI I STERIC EI CANCE OF EACH () OF EACH ()	TOTAL GIE CH CONFORMER CONFORMER DNTRIBUT CH CONFORM EACH CONF ERGY (%) A (KCAL/MC 5 GLOBAL E UERGY (%) ACH CONFORMER	DES'S FREE IER (KCAL/MOL) NO OF EACH IER (KCAL/M OORMER (KCA VL) INERGY MINI IMER	ENERGY CONFORMER IOL) IL/MOL) CMUM (KCAI	R (KCAL/MOI L/MOL)
DE	FINITIONS NO. = I CONF. I HE = TSE = GE = GEPOP = SE = SEPOP = CHIRAL SYM. NU POINT G	: NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB RELATIVE G DISTRIBUTI STERIC ENE RELATIVE S DISTRIBUTI = CHIR M. = SYMM	IN THE ORL ICATION NUM ONTRIBUTION ULRPLIED BY 'S FREE ENE US FREE ENE ON IN GIBB' RGY OF EACE ON BASED ON ALLTY EXIST ETRY NUMBEF T GROUP OF	DER OF THE HEER OF EACH (I OF EACH (I TEME.) CO RGY OF EACH ENERGY OF EACH S FREE ENI S FREE ENI S TERIC EI SY FROM THI S STERIC EI ANCE OF EACH (C SYMMETRY (TOTAL GIE CH CONFORMER ONTRIBUTIC CH CONFORME EACH CONF ERGY (%) & (KCAL/MC 5 GLOBAL E GLOBAL E UERGY (%) ACH CONFOR CONFORMER PF EACH CC	DBS'S FREE HER (KCAL/MOL) N OF EACH HER (KCAL/M 'ORMER (KCA)L) NERGY MINI IMER MFORMER	ENERGY CONFORMER IOL) LL/MOL) :MUM (KCAI	R (KCAL/MOI L/MOL)
DE	FINITIONS NO. = I CONF. I HE = GE = GEPOP SE = DSE = SEPOP CHIRAL SYM. NU POINT G INIT.	: NDEX NUMBER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB RELATIVE G DISTRIBUTI STERIC EME RELATIVE S DISTRIBUTI = CHIR M. = SYMM ROUP = POLM = FLAG OF	IN THE ORL ICATION NUM ONTRIBUTION ULRPLIED BY 'S FREE ENE IBB'S FREE ON IN GIBB' RGY OF EACH TERIC ENERG ON BASED ON ALITY EXIST ETRY NUMBEF T GROUP OF 'EACH CONFC	DER OF THE HEER OF EACH (TEMP.) CC IRGY OF EACH ENERGY OF S FREE ENI CONFORMEN S FREE ENI CONFORMEN S STREE ENI S STRECE ENI CONFORMENT SYMMETRY (DRMER THAT	TOTAL GIB CH CONFORMER ONTRIBUTIC CH CONFORM EACH CONF R (KCAL/MC E GLOBAL E SERGY (%) ACH CONFOR CONFORMER CONFORMER DF EACH CONFOR DF EACH USED	DBS'S FREE LER (KCAL/MOL) NO OF EACH LER (KCAL/M ORMER (KCA)L) INERGY MINI IMER INFORMER FOR INITIA	ENERGY CONFORMEN MOL) LL/MOL) MUM (KCAN	r (KCAL/MOI L/MOL) JRE
DE	FINITIONS NO. = I CONF. I HE = TSE = GE = GE = GE = DSE = CHIRAL SYM. NU POINT G INIT. REOPT.	: NDEX NUMEER D = IDENTIF ENTHALPY C ENTROPY (M TOTAL GIBB RELATIVE G DISTRIBUTI STERIC ENE RELATIVE S DISTRIBUTI M. = SYMM ROUP = POIN = FLAG OF	IN THE ORL ICATION NUM ONTRIBUTION ULRPLIED BY 'S FREE ENE RGY OF EACH ON BASED ON ALITY EXIST TERIC ENERG ON BASED ON ALITY EXIST T GROUP OF 'EACH CONFC 'EACH CONFC	DER OF THE HEER OF EACH (1 OF EACH (1 7 TEMP.) C(RGY OF EACH (1 8 ENERGY OF 5 FREE ENIL 4 CONFORMENT 5 FROM THI 5 STERICE EI 2 ANCE OF EJ 2 ANCE OF EJ 2 ANCE OF EJ 2 ANCE OF EJ 2 ANCE THAT TRMER THAT	TOTAL GIE CH CONFORMER CONFORMER DNTRIBUTIC CH CONFORM EACH CONFOR C (KCAL/MC C GLOBAL E VERGY (%) ACH CONFOR CONFORMER DF EACH CC HAD USED HAD BEEN	UBS'S FREE IER (KCAL/MOL) N OF EACH IER (KCAL/M 'ORMER (KCA)L) (NERGY MINI IMER NFORMER FOR INITLA OPTIMIZED	ENERGY CONFORMEN IOL) LL/MOL) MUM (KCAI LL STRUCTU AGAIN	r (kcal/moi L/mol) JRE

		CONF.										SYM.	POINT			 NO.
N	ο.	ID	HE	TSE	GE	DGE	GPOP	SE	DSE	EPOP	CHIRAL	NUM.	GROUP	INIT.	REOPT.	NEG.
	1	00001	105.5728	20.9996	84.5732	0.0000	99.9202	-3.5609	0.0000	99.9955	F	6	D3D	Т	F	0
	2	00002	111.0428	22.2436	88.7991	4.2259	0.0798	2.3688	5.9297	0.0045	Т	4	D2	F	F	0

Cyclohexane-F.sdf

CONFLEX の配座探索計算において見出された配座が、MDL-MOL 形式の座標データで出力されます。詳細は、構造最適化における分子構造の定義ファイルをご覧下さい。

このファイルの定義において1つ大きな違いがあります。それは、複数の分子構造の定義が連結されていることです。その複数の分子構造定義の区切り記号は、"\$\$\$\$"です。この部分でファイルをターゲットにしてファイル分割できれば、そのまま分子構造の定義ファイルとなります。このファイルの分子構造の定義ファイルの並び方は、全体の Gibbs の自由エネルギーに従っています。ファイルの番号については、"INF="がターゲットであり、前の部分が全体の Gibbs の自由エネルギーに従った番号で、後の部分は CONFLEX が配座探索途中で見出した重複のない配座番号です。

```
0
0
0
0
0
0
0
0
0
0
                      1.2391
0.7716
2.4782
      -1.3365
                                        1.3195 H
0.1742 H

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

        0
        0

                                                                       0
                                                                            0
                                                                       Ő
                                                                            0
                                        -1.3195 H
        0.0000
                       1.5433
                                                                       0
                                                                            0
        0.0000
                      -1.4580
                                          0.2258 C
                                                                       0
                                                                            0
                      -1.4380
-1.2391
-0.7716
-2.4782
-1.5433
-0.7290
      -2.1462
-1.3365
0.0000
                                        0.1742 н
                                                                       0
                                                                            0
                                        -1.3195 H
                                                                       0
                                                                            0
                                        -0.1742 H
                                                                       0
        0.0000
1.2627
                                       1.3195 H
-0.2258 C
                                                                       0
0
                                                                            0
                                                                            0
                       -1.2391
-0.7716
                                       0.1742 H
-1.3195 H
        2.1462
                                                                      0
                                                                            0
                                                                                 0
0
        1.3365
                                                                       0
                                                                            0
                         0.7290
0.7716
1.2391
                                                                      0
0
0
                                                                            0
0
0
                                                                                 0
0
0
                                       0.2258 C
        1.3365
                                       1.3195 H
-0.1742 H
    2
3
        0
                              0
     1
         4
              1
                   0
                              0
     1
2
         5
6
               1
1
                   0
                              0
    2 7
2 16
               1
                   0
0
                              0
0
               1
    3 8
3 9
3 10
               1
                   0
                              0
                    Ō
                              0
                              0
              1 0
  11
12
13
        8
               1
                   0
                              Ő
        8
8
               1 0
1 0
                              0
                              0
  14 13
             1 0
                              0
  13 15
             1 0
                              0
   16
        13
               1
                    0
                              0
16 17 1 0
16 18 1 0
M END
> <P<sup>2</sup><sup>----</sup>
                              0
                              0
 > <DATE YYYY/MM/DD>
2012/08/08
> <TIME_HH:MM:SS.XX>
16:58:55.28
 > <MOL FILE NAME>
Cyclohexane-F: Cyclohexane.mol
 > <FORCE_FIELD_NAME>
 MMFF94S (2010-12-04HG)
 > <TEMPARATURE_K>
       298.15
 > <TOTAL_NUMBER_OF_CONFORMERS>
                2
    <CONFORMER_ID>
 00001
> <POTENTIAL_ENERGY_KCAL/MOL>
    -3.560936
> <ENERGY_RMS_GRADIENT_KCAL/MOL/ANGS>
1.2200000E-08
 > <BOLTZMANN_POPULATION_%>
              99.99550
 > <TOTAL_GIBBS_FREE_ENERGY_KCAL/MOL>
               84.57323
> <TOTAL_ENTHALPY_KCAL/MOL>
    105.5728
> <TOTAL_ENTROPY_CAL/MOL/K>
70.43291
 > <HEAT_CAPACITY_CAL/MOL/K>
              24.41530
> <ENTHALPY_FUNCTION_CAL/MOL/K>
13.69440
 > <CHIRALITY>
 F
 > <SYMMETRY NUMBER>
  6
 > <POINT_GROUP>
 D3D
```

Cyclohexane.mol

15

> <NUMBER_OF_NEGATIVE_EIGENVALUES>

0

> <CONFLEX_PERTURBATION_FLAG>
T
> <CONFLEX_REOPTIMIZATION_FLAG>
F
\$\$\$\$
Cyclohexane.mol
CONFLEX 12080816583D 1 1.00000 2.36879 2

2.3 配座探索空間の拡張

前節の Cyclohexane-F.Is1 を見ますと、2番目の配座の INIT.の列が「F」になっています。これは、この構造がまだ配座探索の初期構造として使用されていないという意味で、この構造から派生する配座異性体はまだ得られていない可能性があります。そこで、この構造を初期構造として探索するために、

MMFF94S CONFLEX SEL=6

を設定ファイル Cyclohexane-F.ini に記述して、再度計算を行います。ここで「SEL=6」としているのは、 最安定構造と2番目の配座のエネルギー差が 5.9297kcal/mol であるためです。再計算の結果、新たな配座は 得られなかったので、CONFLEX のアルゴリズムで探索できる範囲内での、MMFF94s 力場によるエネルギ 一極小構造は全て網羅したことになります。

このように、 **Is1** ファイルの情報を元に、 **SEL** の値を徐々に大きくして計算を繰り返すことで、 探索する配座空間領域を広げることができます。全ての配座異性体を初期構造として使用し、新規の構造が得られなくなった時点で、適用した力場による配座空間を完全に網羅したと見なすことができます。

3. CD/UV スペクトル解析 Dexmedetomidine: Precedex[®]

イミダゾール骨格を有するメデトミジンの活性体(D体)で、強力かつ選択性の高い中枢性 α_2 アドレナリン 受容体作動薬です。中枢性 α_2 受容体を刺激することにより交感神経の刺激伝達を抑制し、鎮静効果を示す とされています。

この化合物を取り上げたのは、CD/UV スペクトル計算の例として、最も簡単な光学活性体を有する化合物として適当であるからです。まず MMFF94S での配座探索結果では、R体S体共に6個の配座異性体が見出されました。R体で得られた配座異性体それぞれについて、CD/UV スペクトル計算を行った結果を以下に示します。

CD スペクトルの上下関係から、(R2, R3)と(R1, R4, R5, R6)の 2 つのグループに分類されますが、R2 と R3 の分布比率が若干大きいため、全体としての CD/UV スペクトルは上に凸になります。

No.ID	Conf ID.	Steric E (kcal/mol)	ΔE (kcal/mol)	Distribution (%)
R1	2	48.8457	0.0000	47.0162
R2	5	49.1525	0.3068	28.0111
R3	3	49.2567	0.4110	23.4962
R4	1	51.2498	2.4041	0.8129
R5	4	51.3723	2.5266	0.6611
R6	6	54.6699	5.8242	0.0025

R1

R2

R-LS1(Weighted-Spectrum)

次に、Gibb's の自由エネルギーを基準にした分布比率を考慮して CD/UV スペクトルを求めた結果を示し ます。先の立体エネルギーの分布比率を用いて重みづけした CD/UV スペクトルと同じように上に凸になっ ています。

		R-F	orm	
No.	Conf. Id	Gibb's Free Energy	Relative	Distribution Based
		(kcal/mol)	Free Energy	on Free Energy
			(kcal/mol)	(%)
1	2	185.8348	0.0000	45.1652
2	3	186.0252	0.1904	32.7496
3	5	186.2725	0.4377	21.5750
4	1	188.8256	2.9908	0.2901
5	4	188.9914	3.1567	0.2193
6	6	192.2929	6.4581	0.0008

R-LS4 (Weighted-Spectrum)

Dexmedetomidine-R.mol ファイル

31	32 0 0	0		1	V200	0			
	-1.0778	-1.6715	0.6897	С	0	0	0	0	0
	-2.0603	-2.6647	1.0836	Ν	0	0	0	0	0
	-2.4168	-2.2186	2.4226	С	0	0	0	0	0
	-1.8248	-1.1779	2.8306	Ν	0	0	0	0	0
	-0.9540	-0.8156	1.7107	С	0	0	0	0	0
	-0.0612	0.3840	1.7794	С	0	0	0	0	0
	0.6530	0.5305	0.4721	С	0	0	0	0	0
	1.6443	-0.4148	0.0972	С	0	0	0	0	0
	2.3211	-0.2864	-1.1434	С	0	0	0	0	0
	2.0041	0.7900	-2.0119	С	0	0	0	0	0
	1.0134	1.7374	-1.6414	С	0	0	0	0	0
	0.3382	1.6082	-0.3982	С	0	0	0	0	0
	-0.8947	1.6284	2.0582	С	0	0	0	0	0
	-0.7060	2.6067	-0.0050	С	0	0	0	0	0
	0.6790	2.8690	-2.5617	С	0	0	0	0	0
	-0.5680	-1.6802	-0.2851	Η	0	0	0	0	0
	-1.9104	-3.6810	0.8775	Η	0	0	0	0	0
	-3.1582	-2.7716	3.0179	Η	0	0	0	0	0
	0.6828	0.2465	2.5956	Η	0	0	0	0	0
	1.8873	-1.2500	0.7705	Η	0	0	0	0	0
	3.0881	-1.0203	-1.4318	Η	0	0	0	0	0
	2.5261	0.8903	-2.9749	Η	0	0	0	0	0

-0.9541 -1.9247 -0.4306 -1.1426 -0.2528 -1.5176 -0.1300				1. 1. 2. 2. 3. 2. 3.	8063 4948 5163 3320 6205 6296 4917	3. 1. 0. 0. -0. -2.	.1554 .6581 .5733 .9812 .0707 .7662 .1188	H H H H H H	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
1	0.3	338 1	0	2. 0	4705 0	-3.	.5419	H	0	0	0	0	0
1 1 2 2 3 3 4 5 6 6 6 7 7 8 8 9 9 0 0 1 1 1 2 3 3 4 1 3 1 3 1 3 1 3 1 4	$\begin{array}{c} 5\\ 16\\ 3\\ 17\\ 4\\ 18\\ 5\\ 6\\ 7\\ 13\\ 9\\ 8\\ 12\\ 9\\ 20\\ 11\\ 212\\ 15\\ 14\\ 25\\ 26\end{array}$	2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 6 1 0 0 1 6 0 6 0 1 0 6 6 1 0 0 6 0 1 0 0 6 0 1 0 0 1 0 0 1 6 0 1 0 0 1 6 0 1 0 0 0 1 0 0 0 0 1 0		000000000000000000000000000000000000000								
14 14	27 28 29	1 1 1	0 6 0	0 0	0 0								
15 15	29 30 31	1 1	0 0 6	0 0	0								

M END

配座探索用.iniファイル

MMFF94S CONFLEX PRECHK SEARCH=ENERGY SEL=50.0

CD/UV 計算用.ini ファイル

MMFF94S CDUV SCF=PPP HFOPT=(ITER=50,PLEVEL=0) CIOPT=(OCC=10,UNOCC=10)

4. 結晶構造最適化

4.1 結晶計算法

超微小球状結晶モデル

CONFLEX による結晶計算は、非対称単位の分子と、空間群で定められる対称操作と結晶の並進対称性に したがって有効結晶半径まで展開した分子で構成される球状の結晶を構築します(図1)。ここで、非対称 単位の分子をオリジナル分子、対称操作により展開した分子をレプリカ分子と呼びます。CONFLEX の結晶 計算では、遠方からの分子間相互作用を精密に評価するため、超微小の球状結晶を明示的に構築し、3 次元 周期境界条件を用いていません。そのため、結晶構造を維持するために十分な有効結晶半径を設定する必要 があります。これについては、既に慎重に検討を行った結果、結晶充填において分子間(オリジナル・レプ リカ分子間)の最近接原子間距離が約 20 Å 以内にある分子を考慮すればよいことがわかっています。

図1 超微小球状結晶モデル

結晶エネルギーの定義(※)

球状結晶の結晶エネルギーは、次のように定義します。

$$E_{\rm crystal} = E_{\rm intra} + E_{\rm lattice} \tag{1}$$

$$E_{\text{lattice}} = E_{\text{inter}}^{\text{AU}} + \frac{1}{2} \sum_{i}^{N} \sum_{S}^{M} \sum_{J}^{N} E_{\text{inter}}(i; S, J)$$
(2)

ここで、*E*_{intra}はオリジナル分子の分子内相互作用エネルギーの和、*E*^{AU}_{inter}はオリジナル分子間の相互作用エ ネルギーの和(オリジナル分子が1分子の場合、*E*^{AU}_{inter} = 0)、*E*_{inter}(*i*; *S*, *J*)はオリジナル分子の原子*i*とレプ リカ分子の原子 *J*間の相互作用エネルギー、*N*はオリジナル分子を構成する総原子数、*M*はレプリカ単位 (対称操作により展開される非対称単位)の総数です。なお、結晶エネルギーにおいて分子間相互作用エネ ルギーの和は格子エネルギーとして定義しています。

※ (2)式の定義は CONFLEX 7 Revision D から採用しているため、Revision C 以前の計算結果とは異なりま すのでご注意ください。

結晶構造最適化法

(1) 結晶環境下での分子構造最適化(Molecular structure optimization)

結晶内分子の構造、回転、並進を、結晶環境下で最適化します。本最適化において、格子の大きさ(格子 定数)は変化しません。なお、最適化過程で、空間群は維持されます。

(2) 剛体分子近似下での結晶構造最適化(Rigid-molecule optimization)

結晶内分子の回転、並進、および格子の大きさ(格子定数)を最適化します。本最適化において、分子構造は変化しません。なお、最適化過程で、空間群は維持されます。

(3) 完全結晶構造最適化(Full optimization)

結晶構造を表現するすべての自由度(結晶内の分子の構造、回転、並進、および格子の大きさ)を最適化 します。なお、最適化過程で、空間群は維持されます。

4.2 CONFLEX を用いた結晶構造最適化

マロン酸誘導体の一つであるヒドロキシマロン酸(図 2)の結晶構造を例に、CONFLEX により結晶構造最 適化を行う方法について説明します。なお、結晶構造最適化には、入力情報として、非対称単位の分子の原 子座標と格子定数、また空間群が必要です。

図2 ヒドロキシマロン酸の分子構造

CIFMIF ファイルを用いる場合

ヒドロキシマロン酸の結晶構造[1]を CIFMIF (Combined CIF and MIF file, CIF: Crystallographic Information File[2], MIF: Molecular Information File[3]) 形式で作成し(ファイル名: Tartronicacid.cmf) これを入力ファイルとして利用します。ヒドロキシマロン酸の結晶構造を GUI で可視化したものを図 3 に示します。

Tartronicacid.cmf ファイル

```
data TARTRONICACID
symmetry cell setting orthorhombic
_symmetry_space_group_name_H-M 'P 21 21 21'
_ccdc_symmetry_space_group_name P212121
 symmetry Int Tables number 19
loop
_symmetry_equiv_pos site id
 _symmetry_equiv_pos_as_xyz
1 x,y,z
2 1/2+x,1/2-y,-z
3 -x, 1/2+y, 1/2-z
4 1/2-x,-y,1/2+z
_cell_length_a 4.494
_cell_length_b 8.819
_cell_length_c 10.882
_cell_angle_alpha 90
_cell_angle_beta 90
_cell_angle_gamma 90
_cell_formula_units_Z 4
loop
ccdc atom site atom id number
_atom_site_label
_atom_site_type_symbol
_atom_site_fract x
_atom_site_fract y
_atom_site_fract_z
_ccdc_atom_site_symmetry
ccdc atom site base
1 01 0 0.12990 -0.13910 0.36040 1 555 1
2 02 0 -0.02490 0.09280 0.30700 1 555 2
3 03 0 0.01480 0.11550 0.66290 1 555 3
4 04 0 0.13030 -0.12820 0.62810 1 555 4
5 05 0 -0.42760 0.09790 0.48970 1 555 5
6 C1 C -0.02250 -0.01540 0.37600 1 555 6
7 C2 C -0.21190 -0.01520 0.49230 1 555 7
8 C3 C -0.00990 -0.00160 0.60420 1 555 8
```

```
9 H1 H -0.33200 -0.11200 0.49600 1_555 9
10 H2 H -0.39500 0.14900 0.45600 1_555 10
11 H3 H 0.23700 -0.13800 0.31000 1_555 11
12 H4 H 0.27100 -0.12000 0.68000 1 555 12
loop
_bond_id 1
_bond_id_2
_bond_type_ccdc
_bond_environment
1 6 S chain
2 6 D chain
3 8 D chain
4 8 S chain
5 7 S chain
6 7 S chain
7 8 S chain
9 7 S chain
10 5 S chain
11 1 S chain
12 4 S chain
```


図3 ヒドロキシマロン酸の結晶構造

CONFLEX で結晶計算を行う場合、「CRYSTAL」というキーワードを ini ファイルに記述します。ここでは、MMFF94s 力場を用いて結晶計算を行うものとし、"Tartronicacid.ini"を作成します。

<u>Tartronicacid.ini ファイル</u> MMFF94S CRYSTAL

"Tartronicacid.cmf"と"Tartronicacid.ini"の二つのファイルを用いて CONFLEX を実行すると、ヒドロキシマロン酸の結晶構造の Rigid-molecule optimization が行われます。CONFLEX では、ユーザーが明示的に指定しない限り、結晶計算において、Rigid-molecule optimization を行います。また、有効結晶半径は 20 Å です。CONFLEX の実行方法はマニュアルをご参照ください。

実行後に出力される" Tartronicacid.bso"ファイルには、最適化ステップ毎の格子エネルギー値(あるいは、結晶エネルギー値)や構築した結晶構造情報などが記述されます。以下に、" Tartronicacid.bso"の内容の一部を示します。

Tartronicacid.bsoファイル

CRYSTAL STRUCTURE	INFORMATION
CRYSTAL SYSTEM:	ORTHORHOMBIC
SPACE GROUP NAME:	P212121
NUMBER:	19
SYMMETRY EQUIVALENT POSITION 1:	x,y,z
2:	1/2+x,1/2-y,-z
3:	-x,1/2+y,1/2-z
4:	1/2-x,-y,1/2+z
CELL LENGTHS a:	4.6693 ANGSTROM
b:	8.9311
c:	10.5217
CELL ANGLES alpha:	90.0000 DEGREE
beta:	90.0000
gamma:	90.0000
CELL VOLUME:	438.7735 ANGSTROM**3
CELL DENSITY:	1.8165 MG/M**3
Ζ :	4 (ZCFX: 4)
CRYSTAL RADIUS (VDW):	20.00 ANGSTROM
CRYSTAL RADIUS (COULOMBIC):	20.00 ANGSTROM
CRYSTAL PACKING GA:	15 (PGA: 8 NGA: -7)
GB:	11 (PGB: 6 NGB: -5)
GC:	9 (PGC: 5 NGC: -4)
NUM. OF ATOMS IN ASYMMETRIC UNIT:	12
NUM. OF MOLS IN ASYMMETRIC UNIT:	1
NUM. OF ATOMS IN UNIT CELL:	48
NUM. OF CALCULATED UNIT CELLS:	177
NUM. OF CALCULATED MOLECULES (VDW):	493
NUM. OF CALCULATED ATOMS (VDW):	5916
NUM. OF CALCULATED MOLECULES (COULOM.):	493
NUM. OF CALCULATED ATOMS (COULOM.):	5916
INTRAMOLECULAR ENERGY:	258.8731 KCAL/MOL
LATTICE ENERGY:	-23.8605 KCAL/MOL
CRYSTAL ENERGY:	235.0126 KCAL/MOL

bsoファイルに出力される「CRYSTAL STRUCTURE INFORMATION」は、構築した球状結晶の構造に関する情報や各種エネルギー値を記述しています。本データは初期結晶構造と最適化結晶構造の両構造について 出力されます。

CRYSTAL RADIUS:	有効結晶半径
CRYSTAL PACKING GA GB GC:	a軸、b軸、c軸方向への単位格子の展開領域
NUM. OF ATOMS IN ASYMMETRIC UNIT:	非対称単位の総原子数(オリジナル分子を構成する総原子数)
NUM. OF MOLS IN ASYMMETRIC UNIT:	非対称単位の総分子数(オリジナル分子の総数)
NUM. OF CALCULATED UNIT CELLS:	球状結晶内の総単位格子数
NUM. OF CALCULATED MOLECULES:	球状結晶内の総分子数
NUM. OF CALCULATED ATOMS:	球状結晶内の総原子数
INTRAMOLECULAR ENERGY:	Eintra(結晶エネルギーの定義を参照)
LATTICE ENERGY:	Elattice(結晶エネルギーの定義を参照)
CRYSTAL ENERGY:	Ecrystal (結晶エネルギーの定義を参照)

最適化結晶構造情報は、CIFMIF 形式で "Tartronicacid-F.cmf"ファイルに出力されます。"Tartronicacid-F.cmf"を可視化したものを図4に示します。

図4 ヒドロキシマロン酸の最適化結晶構造

次に、ヒドロキシマロン酸の結晶構造について、Molecular structure optimization を行う方法について説明 します。ここでは、有効結晶半径を 30 Å とします。結晶構造最適化手法の設定は、キーワード 「CRYSTAL_OPTIMIZATION=」を用い、有効結晶半径の設定はキーワード「CRYSTAL_RADIUS=」を用い ます。以下に、"Tartronicacid.ini"ファイルの内容を示します。

<u>Tartronicacid.ini ファイル(Molecular structure optimization;</u>有効結晶半径 30 Å) MMFF94S CRYSTAL CRYSTAL_OPTIMIZATION=MOL CRYSTAL_RADIUS=30.0

"Tartronicacid.cmf"と"Tartronicacid.ini"の二つのファイルを用いて CONFLEX を実行すると、ヒドロキシマロン酸の結晶構造の Molecular structure optimization が行われます。また、ヒドロキシマロン酸の結晶構造について Full optimization を行う場合は、以下のように ini ファイルを作成してください。

<u>Tartronicacid.ini ファイル(Full optimization)</u> MMFF94S CRYSTAL CRYSTAL_OPTIMIZATION=ALL

CIF ファイルを利用する場合

低分子有機化合物の結晶構造情報は、CIF形式で公開、配布、交換されることが多く、学術論文では Supplementary material として CIF ファイルが添付されていることがあります。CIF ファイルには、結晶計 算に必要な非対称単位の分子の原子座標、格子定数、空間群の情報は記述されていますが、原子間の結合情 報が記述されていないことがあります。そのため、結晶計算を行うためには、ini ファイルにキーワード 「CIF_BOND=」を用いて原子間の結合情報を記述する必要があります。以下に、CIF ファイルを利用した 結晶計算の方法について説明します。

Tartronicacid.cif ファイル

data_TARTRONICACID
_symmetry_cell_setting orthorhombic
_symmetry_space_group_name_H-M 'P 21 21 21'
_symmetry_Int_Tables_number 19
loop_

_symmetry_equiv_pos_site_id symmetry equiv pos as xyz 1 x,y,z 2 1/2+x,1/2-y,-z 3 -x, 1/2+y, 1/2-z 4 1/2-x,-y,1/2+z _cell_length_a 4.494 _cell_length_b 8.819 _cell_length_c 10.882 _cell_angle_alpha 90 _cell_angle beta 90 _cell_angle_gamma 90 cell formula units Z 4 loop atom site label atom site type symbol atom site fract x _atom_site_fract y atom site fract z 01 0 0.12990 -0.13910 0.36040 02 0 -0.02490 0.09280 0.30700 03 0 0.01480 0.11550 0.66290 04 0 0.13030 -0.12820 0.62810 05 0 -0.42760 0.09790 0.48970 C1 C -0.02250 -0.01540 0.37600 C2 C -0.21190 -0.01520 0.49230 C3 C -0.00990 -0.00160 0.60420 H1 H -0.33200 -0.11200 0.49600 H2 H -0.39500 0.14900 0.45600 НЗ Н 0.23700 -0.13800 0.31000 H4 H 0.27100 -0.12000 0.68000

上記した"Tartronicacid.cif"には、ヒドロキシマロン酸分子の結合情報が記述されていません。そのため、 キーワード「CIF_BOND=」を用いて、ini ファイル内にヒドロキシマロン酸分子の結合情報を記述します。 キーワード「CIF_BOND=」の書式は、原子 i-j 間に n 重結合を指定する場合「CIF_BOND=(i,j,n)」となりま す。

 Tartronicacid.ini $\forall \forall \forall A$

 MMFF94S

 CRYSTAL

 CIF_BOND=(1,6,1)

 CIF_BOND=(2,6,2)

 CIF_BOND=(3,8,2)

 CIF_BOND=(4,8,1)

 CIF_BOND=(5,7,1)

 CIF_BOND=(6,7,1)

 CIF_BOND=(7,8,1)

 CIF_BOND=(10,5,1)

 CIF_BOND=(11,1,1)

 CIF_BOND=(12,4,1)

"Tartronicacid.cif"と"Tartronicacid.ini"の二つのファイルを用いて CONFLEX を実行します。CONFLEX は、ヒ ドロキシマロン酸の結晶構造の Rigid-molecule optimization を行います。

MDL-MOL ファイルを利用する場合

MDL-MOL ファイルに記述される分子が、非対称単位となります。MDL-MOL ファイルを利用して結晶計 算を行う場合は、MDL-MOL ファイルに記述される分子の向きや XYZ 座標上の空間位置を適切に設定する ことが重要です。分子の空間位置によっては、対称操作による分子の展開後、複数の分子が重なって配置さ れることがあります。ここでは前出の "Tartronicacid.cif"を元に MDL-MOL 形式に変換し た"Tartronicacid.mol"を用います。以下に、"Tartronicacid.mol"の内容を示します。

<u>Tartronicacid.mol ファイル</u> Hydroxymalonic acid

1	2	11	0	0	0	0	0	0	0	0	999	V20	00			
		0.5	838		-1.	226	7	3	.92	19	0	0	0	0	0	0
	-	-0.1	119		Ο.	818	4	3	.34	8 0	0	0	0	0	0	0
		0.0	665		1.	018	6	7	.21	37	0	0	0	0	0	0
		0.5	856		-1.	130	6	6	.83	50	0	0	0	0	0	0
	-	-1.9	216		0.	863	4	5	.32	89	0	0	0	0	0	0
	-	-0.1	011		-0.	135	8	4	.09	16	С	0	0	0	0	0
	-	-0.9	523		-0.	134	0	5	.35	72	С	0	0	0	0	0
	-	-0.0	445		-0.	014	1	6	.57	49	С	0	0	0	0	0
	-	-1.4	920		-0.	987	7	5	.39	75	Η	0	0	0	0	0
	-	-1.7	751		1.	314	0	4	.96	22	Η	0	0	0	0	0
		1.0	651		-1.	217	0	3	.37	34	Η	0	0	0	0	0
		1.2	179		-1.	058	3	7	.39	98	Η	0	0	0	0	0
1	1	1	1	0	0	0										
	1	6	1	0	0	0										
	2	6	2	0	0	0										
	8	3	2	0	0	0										
	8	4	1	0	0	0										
	4	12	1	0	0	0										
	5	7	1	0	0	0										
	6	7	1	0	0	0										
	7	9	1	0	0	0										
	7	8	1	0	0	0										
	5	10	1	0	0	0										
М	E	END														

MDL-MOL ファイルには格子定数と空間群に関する記述がありません。そのため、結晶計算を行うために は、ini ファイルにキーワード「LATTICE_CONSTANT=」と「SPACE_GROUP=」を用いて格子定数と空間 群を設定する必要があります。ヒドロキシマロン酸の結晶構造の格子定数は、a=4.494 Å, b=8.819 Å, c=10.882 Å, α =90.0°, β =90.0°, γ =90.0°であり、空間群は P2₁2₁2₁です。以下に、"Tartronicacid.ini"の内 容を示します。

<u>Tartronicacid.ini ファイル</u> MMFF94S CRYSTAL SPACE_GROUP=P212121 LATTICE_CONSTANT=(4.494,8.819,10.882,90.0,90.0,90.0)

"Tartronicacid.mol"と"Tartronicacid.ini"の二つのファイルを用いて CONFLEX を実行します。CONFLEX は、 ヒドロキシマロン酸の結晶構造の Rigid-molecule optimization を行います。

PDB ファイルを利用する場合

X線結晶構造解析により得られた PDB ファイルであれば、結晶計算に必要な結晶構造情報は PDB ファイル内に記述されています。そのため、結晶計算の実行方法は cmf ファイルや cif ファイルを利用する場合と同様です。一方、結晶構造情報が PDB ファイル内に記述されていない場合、結晶計算の実行方法は MDL-MOL ファイルと同様になります。ここでは前出の"Tartronicacid.cif"を元に PDB 形式に変換した"Tartronicacid.pdb"を用いて説明します。以下に、"Tartronicacid.pdb"の内容を示します。

Tartronicacid.pdb ファイル

CRYST1	4.	494	8.819		10.882 90.00	0 90.00	90.00	P 21 2	1 21	4
ATOM	1	01	0	1	0.584	-1.227	3.922	1.00	0.00	
ATOM	2	02	0	1	-0.112	0.818	3.341	1.00	0.00	
ATOM	3	03	0	1	0.067	1.019	7.214	1.00	0.00	
ATOM	4	04	0	1	0.586	-1.131	6.835	1.00	0.00	
ATOM	5	05	0	1	-1.922	0.863	5.329	1.00	0.00	

ATOM	6	C1	0	1	-0.101	-0.136	4.092	1.00	0.00
ATOM	7	C2	0	1	-0.952	-0.134	5.357	1.00	0.00
ATOM	8	C3	0	1	-0.044	-0.014	6.575	1.00	0.00
ATOM	9	H1	0	1	-1.492	-0.988	5.397	1.00	0.00
ATOM	10	H2	0	1	-1.775	1.314	4.962	1.00	0.00
ATOM	11	HЗ	0	1	1.065	-1.217	3.373	1.00	0.00
ATOM	12	H4	0	1	1.218	-1.058	7.400	1.00	0.00
END									

上記した"Tartronicacid.pdb"には、「CRYST1」により格子定数と空間群が記述されています。結晶計算時、CONFLEXは、「CRYST1」で記述されたデータを利用するため、iniファイル内に格子定数や空間群を設定する必要はありません。PDBファイル内に「CRYST1」の記述がない場合は、キーワード「LATTICE CONSTANT=」と「SPACE GRUOP=」を用いて、格子定数と空間群を設定してください。

"Tartronicacid.pdb"では、ヒドロキシマロン酸分子の結合情報が記述されていません。そのため、キーワード「PDB_CONECT=」を用いて、ini ファイル内にヒドロキシマロン酸分子の結合情報を記述します。キーワードの利用方法は、マニュアルをご参照ください。以下に、"Tartronicacid.ini"の内容を示します。

Tartronicacid.ini 771ν MMFF94S CRYSTAL PDB_CONECT=(1,6,1) PDB_CONECT=(2,6,2) PDB_CONECT=(3,8,2) PDB_CONECT=(3,8,2) PDB_CONECT=(4,8,1) PDB_CONECT=(5,7,1) PDB_CONECT=(6,7,1) PDB_CONECT=(7,8,1) PDB_CONECT=(10,5,1) PDB_CONECT=(10,5,1) PDB_CONECT=(11,1,1) PDB_CONECT=(12,4,1)

"Tartronicacid.pdb"と"Tartronicacid.ini"の二つのファイルを用いて CONFLEX を実行します。CONFLEX は、 ヒドロキシマロン酸の結晶構造の Rigid-molecule optimization を行います。

参考文献

[1] Roelofsen, G.; Kanters, J.A.; Kroon, J.; Doesburg, H.M.; Koops, T. Acta Cryst. 1978, B34, 2565.

[2] Hall, A. R.; Allen, F. H.; Brown, I. D. Acta Cryst. 1991, A47, 655.

[3] Allen, F. H.; Barnard, J. M.; Cook, A. P. F.; Hall, S. R. J. Chem. Inf. Comput. Sci. 1995, 35, 412.

[4] Mercury, Cambridge Crystallographic Data Center, Cambridge, UK

5. 結晶構造予測と結晶多形スクリーニング

複雑な化学構造を持つ有機化合物には、複数の結晶構造(結晶多形)が存在することがあります。結晶の 構造は、その結晶が与える物性と密接に関係しており、新規医薬品開発や新規機能性有機材料開発において、 薬の有効性や安全性、また材料の機能性を確保するために、候補化合物の結晶多形スクリーニングは非常に 重要となります。CONFLEX は独自のアルゴリズムにより、有機化合物の優位に存在する結晶構造をシミュ レーションにより予測することで、結晶多形スクリーニングを実現します。また CONFLEX は、分子のパッ キング様式の違いにより生じるパッキング多形(Packing Polymorphism)や、分子のコンフォメーションの 違いにより生じる配座多形(Conformational Polymorphism)のスクリーニングに有効です。

2-Propenal の結晶構造予測

Cambridge Crystallographic Data Center (CCDC) では、定期的に、結晶構造予測に関するブラインドテストを実施しています[1-5]。ここでは、ブラインドテストで用いられた分子である 2-Propenal (図 1) [4]の結晶構造予測を、CONFLEX を用いて行う方法について説明します。

図1 2-Propenal の分子構造

まず、2-Propenalの分子構造ファイルを作成します。ここでは、分子構造ファイルの作成に、 PerkinElmer 社の ChemDraw を用います。ChemDraw の利用方法は、マニュアルをご覧ください。

図 2 ChemBioDraw による 2-Propetnal 分子構造ファイルの作成

2-Propenal の分子構造は、MDL-MOL 形式により、"2-propenal.mol"として保存します。

<u>2-propenal.mol ファイル</u>

2-propenal.cdx

ChemDraw04071215022D

	8	7	0	0	0	0	0	0	0	0999) V2(000										
	_	0.7	145		-0.	206	2	0	.000	0 C	0	0	0	0	0	0	0	0	0	0	0	0
	_	0.0	000		Ο.	206	2	0	.000	0 C	0	0	0	0	0	0	0	0	0	0	0	0
		0.7	145		-0.	206	2	0	.000	0 C	0	0	0	0	0	0	0	0	0	0	0	0
	_	1.4	289		Ο.	206	2	0	.000	0 0	0	0	0	0	0	0	0	0	0	0	0	0
	_	0.7	145		-1.	031	3	0	.000	0 H	0	0	0	0	0	0	0	0	0	0	0	0
	-	0.0	000		1.	031	3	0	.000	0 H	0	0	0	0	0	0	0	0	0	0	0	0
		1.4	289		Ο.	206	2	0	.000	0 H	0	0	0	0	0	0	0	0	0	0	0	0
		0.7	145		-1.	031	3	0	.000	0 H	0	0	0	0	0	0	0	0	0	0	0	0
	1	2	1	0																		
	2	3	2	0																		
	1	4	2	0																		
	1	5	1	0																		
	2	6	1	0																		
	3	7	1	0																		
	3	8	1	0																		
М	E	ND																				

次に、2-Propenal の分子構造を孤立気相中において最適化します。用いる分子力場を MMFF94s とし、ini ファイルを作成します。

<u>2-propenal.ini ファイル</u> MMFF94S

"2-propenal.mol"と**"2-propenal.ini**"の**2**つのファイルを用いて**CONFLEX**を実行します。実行後に出力される **"2-propenal-F.mol**"が、最適化後の**2-Propenal**の分子構造ファイルです。結晶構造予測では、**"2-propenal-F.mol**"を分子構造ファイルとして用います。

<u>2-propenal-F.mol ファイル</u>

```
2-propenal.cdx
 CONFLEX 12040715023D 1 1.00000
                             9.38699
                                        0
CS , E = 9.387, G = 4.391E-11, M(0)
                                MMFF94S(2010-12-04HG)
         0
 8 7 0
                        999 V2000
  0.0000
          0.7125
                 0.0000 C 0 0 0 0 0
  -0.0130 -0.7635
                 0.0000 C
                           0 0 0 0 0
         -1.4586
                 0.0000 C
                           0 0 0 0 0
  1.1295
          1.3578
                0.0000 0
                           0 0 0 0 0
  -1.0405
   0.9919
          1.1939 0.0000 H
                          0 0 0 0 0
  -0.9865
         -1.2396 0.0000 H 0 0 0 0
   1.1085 -2.5446 0.0000 H 0 0 0 0
   2.1042 -0.9809 0.0000 H 0 0 0 0
 1 2 1 0
            0
 2 3 2 0
             0
 1 4 2 0
             0
 1 5 1 0
             0
 2 6 1 0
             0
 3 7 1 0
             0
 38
     1 0
             0
```

M END

次に、結晶構造予測を行うための ini ファイルを作成します。CONFLEX で結晶構造予測を行う場合、「CRYSTAL_SEARCH」というキーワードを ini ファイルに記述します。以下に、"2-propenal-F.ini"ファイル 内容を示します(※)。

<u>2-propenal-F.iniファイル</u> MMFF94S CRYSTAL_SEARCH CSP_SPGP=(P21/C,P212121,P-1,P21,C2/C,PBCA,PNA21,PNMA,PBCN) CSP_ROT_MODE=RANDOM CSP_AUS_MODE=RANDOM CSP_MAX_CRYSTAL=3000 CSP_RSTEP=20.0 CRYSTAL_OPTIMIZATION=RIGID CONGRD_MAXITR=9000

※CONFLEX 7 Revision Dより、「**CSP_ROT_MODE=GRID**」および「**CSP_AUS_MODE=FULL**」がデフ オルトになりました。マニュアルも併せてご参照ください。

キーワード「CSP_SPGP=」は、結晶構造予測で考慮する空間群を定義します。ここでは、P21/c、 P212121、P-1、P21、C2/c、Pbca、Pna21、Pnma、Pbcnを指定します。Cambridge Structural Database (CSD)を用いた統計解析から、有機結晶の約9割が、先に示す空間群に属することが報告されています [6]。キーワード「CSP_MAX_CRYSTAL=」は、構築する試行結晶構造数を定義します。ここでは、試行結 晶構造数は3000とします。試行結晶構造数を多く設定することで、探索空間を広くすることができ予測の 信頼性が向上しますが、その分計算負荷が大きくなります。キーワード「CSP_RSTEP=」は、試行結晶構 造生成のための、分子回転幅を指定します。ここでは、20°刻みの分子回転を行うことで、試行結晶構造を 生成することにします。キーワード「CRYSTAL_OPTIMIZATION=」は結晶構造最適化方法を指定します。 ここでは、キーワードオプション「RIGID」を指定し、分子の並進・回転、および格子の大きさを最適化す ることにします。キーワード「CONGRD_MAXITR=」は、共役勾配法による最適化ステップの最大値を指 定します。ここでは、最大ステップ数は9000とします。

"2-propenal-F.mol"と"2-propenal-F.ini"の 2 つのファイルを用いて CONFLEX を実行します。実行後、以下 のファイルが出力されます(ここでは、結晶構造予測計算時に追加出力されるファイルを取り上げます)。

- *.csp
 - ▶ 結晶構造予測計算に関する詳細情報が出力されます。
- *.cpt
 - ▶ 再計算用の情報が出力されます。
- *.ical
 - ▶ 予測結晶構造の回折データが出力されます。
- *-PCS.cif
- ▶ 予測結晶構造が結晶エネルギー順(あるいは、回折パターンの相似度順)に出力されます。
- *-FCS.cif
 - 結晶構造予測計算では、複数の試行結晶構造の最適化計算が行われます。本ファイルには、最適 化計算が終了した試行結晶構造の最適化構造が出力されます。そのため、予測計算途中において も、本ファイルを用いることで、創出された予測結晶構造を確認することができます。

"2-propenal-F.csp"内の「******* PREDICTED CRYSTAL STRUCTURES:」部に、結晶構造予測計算により創出 された予測結晶構造に関する情報が出力されます(図 3)。

*** PR1	*** PREDICTED CRYSTAL STRUCTURES:														
ID	K CID	E RNK	CRYST	INTRA	INTER	VOL	DES	A	в	С	ALPHA	BETA	GAMMA	SPGP	
	5 1920	_1	-0.4486	9.3870	-9.8355	744.6891	0.9993	14.0400	7.3928	7.1746	90.0000	90.0000	90.0000	PBCA	
1	5 1850	2	-0.4386	9.3870	-9.8256	740.2723	1.0052	14.2907	7.3082	7.0880	90.0000	90.0000	90.0000	PBCA	
1	9 1976	3	-0.4386	9.3870	-9.8256	740.2675	1.0052	14.2906	7.3082	7.0881	90.0000	90.0000	90.0000	PBCA	
2	2145	4	-0.4386	9.3870	-9.8256	740.2726	1.0052	7.3083	7.0881	14.2906	90.0000	90.0000	90.0000	PBCA	
2	L 238	5	-0.3786	9.3870	-9.7656	375.7809	0.9901	11.0377	7.3857	7.3356	90.0000	38.9316	90.0000	P21/C	
2	2 277	6	-0.3619	9.3870	-9.7489	375.9048	0.9898	7.0468	7.3860	7.3401	90.0000	100.2810	90.0000	P21/C	
2	4 1841	7	-0.2807	9.3870	-9.6677	749.1892	0.9933	7.2057	9.8438	10.5622	90.0000	90.0000	90.0000	PBCA	
4	5 337	8	-0.2084	9.3870	-9.5954	377.1531	0.9865	7.3329	7.2870	7.0581	90.0000	90.0000	90.0000	P212121	
5	3 335	9	-0.2084	9.3870	-9.5954	377.1540	0.9865	7.2870	7.3329	7.0582	90.0000	90.0000	90.0000	P212121	
5	5 454	10	-0.1973	9.3870	-9.5843	377.2818	0.9862	7.2873	7.0571	7.3362	90.0000	90.0000	90.0000	P212121	

図 3 2-Propenal の予測結晶構造(2-propenal-F.csp ファイル内容の一部)

図 3 より、Pbca の空間群に属する予測結晶構造が最も安定な結晶構造として創出されたことが分かりま す。そこで、空間群 Pbca に属する結晶を詳細に探索することにします。以下に、ini ファイル内容を示しま す。

<u>2-propenal-F-Pbca.ini ファイル</u> MMFF94S CRYSTAL_SEARCH

CSP_SPGP=(PBCA) CSP_RSTEP=20.0 CRYSTAL_OPTIMIZATION=RIGID CONGRD_MAXITR=9000

「CSP_ROT_MODE=GRID」および「CSP_AUS_MODE=FULL」がデフォルト設定ですので、上記のキー ワードだけで x 軸、y 軸、z 軸それぞれでの 20°刻みによる分子回転から得られる全ての分子配向を用い、か つ空間群 Pbca で定義できる非対称単位領域の選択方法全てを用いて試行結晶構造を生成します。つまり、 上記の設定により空間群 Pbca で生成可能な試行結晶構造を全て予測計算で考慮することになります。

"2-propenal-F.mol"ファイルを"2-propenal-F-Pbca.mol"として複製します。"2-propenal-F-Pbca.mol"と"2-propenal-F-Pbca.ini"の2つのファイルを用いて CONFLEX を実行します。以下に、"2-propenal-F-Pbca.cpt" ファイル内容の一部を示します。

*** PRED	*** PREDICTED CRYSTAL STRUCTURES:													
IDX	CID	E RNK	CRYST	INTRA	INTER	VOL	DES	A	в	С	ALPHA	BETA	GAMMA	SPGP
7	14	_1	-0.4486	9.3870	-9.8355	744.6908	0.9994	14.0401	7.3927	7.1746	90.0000	90.0000	90.0000	PBCA
423	41	2	-0.4386	9.3870	-9.8256	740.2733	1.0054	7.3082	7.0881	14.2906	90.0000	90.0000	90.0000	PBCA
620	72	3	-0.4386	9.3870	-9.8256	740.2690	1.0054	7.0880	14.2906	7.3082	90.0000	90.0000	90.0000	PBCA
628	4560	4	-0.4386	9.3870	-9.8256	740.2692	1.0054	7.0880	14.2906	7.3082	90.0000	90.0000	90.0000	PBCA
672	10	5	-0.2807	9.3870	-9.6677	749.1877	0.9934	7.2057	9.8438	10.5621	90.0000	90.0000	90.0000	PBCA
1253	5908	6	-0.2586	9.3870	-9.6456	753.0392	0.9883	8.6259	6.3495	13.7491	90.0000	90.0000	90.0000	PBCA
1266	9	7	-0.1667	9.3870	-9.5537	741.9136	1.0031	7.7572	10.5865	9.0344	90.0000	90.0000	90.0000	PBCA
1789	3437	8	-0.1667	9.3870	-9.5537	741.9050	1.0031	7.7570	10.5864	9.0345	90.0000	90.0000	90.0000	PBCA
1965	25	9	-0.0473	9.3870	-9.4343	752.9589	0.9884	8.4879	10.4897	8.4568	90.0000	90.0000	90.0000	PBCA
2130	53	10	-0.0250	9.3870	-9.4120	748.7977	0.9939	7.6254	12.7262	7.7162	90.0000	90.0000	90.0000	PBCA

図 4 2-Propenal の予測結晶構造(空間群: Pbca, 2-propenal-F-Pbca.csp ファイル内容の一部)

ここで、エネルギー順位(E_RNK) 1~10の予測結晶構造と実験構造を比較すると(図 5)、エネルギー順 位 4 の予測構造が実験構造とよく一致することが分かります。エネルギー順位 2、3 の予測構造は、結晶エ ネルギー値等から同一の構造であると考えられます。つまり、実験構造とよく一致する予測結晶構造は、エ ネルギー的に3番目に安定な構造として創出されたことになります。CCDCで行われるブラインドテストで は、参加グループがテスト分子の結晶構造を3種類提唱し、その中に実験構造と一致する構造があれば正答 を与えたと判断されます。2-Propenalのブラインドテストでは、13の参加グループのうち正答を導いたグ ループは4グループであり、その正答率はわずか3割です。

図5 実験構造(左)と予測構造(右)の比較
分子複合体を用いた結晶構造予測

複数分子を非対称単位とした結晶構造予測ついて、ヒドロキシマロン酸(図6)を例に、説明します。

図6 ヒドロキシマロン酸の分子構造

ヒドロキシマロン酸はカルボキシル基を持つ分子です。カルボキシル基を持つ分子は、中心対称関係にあるカルボキシル基間で OH…O 水素結合を形成する結晶が多くみられます。そこで、図7に示すヒドロキシマロン酸2分子を結晶構造予測計算に用いることにします。

図7 OH…O水素結合を形成するヒドロキシマロン酸分子複合体

ここでは、ヒドロキシマロン酸のX線結晶構造から、カルボキシル基間でOH…O水素結合を形成する2分子を切り出し(図7)、これを孤立気相中において最適化した構造を予測計算に用います。

HMA-2mols-F.mol ファイル HMA-2mols-F.mol

CONFLEX 120)41318393D	1	1.0000	0	1	6.3	88511	L	0
CI, E =	16.385, G	=	6.232E-0)7,	М(О)		MME	FF94S(2010-12-04HG)
24 22 0	0		(999	V20	00			
-1.4902	1.0622		0.7306	0	0	0	0	0	0
-1.0468	-0.9730		-0.0938	0	0	0	0	0	0
-4.5644	-0.0394		-1.3435	0	0	0	0	0	0
-4.6583	1.4604		0.3062	0	0	0	0	0	0
-3.5808	-1.8931		0.5389	0	0	0	0	0	0
-1.8563	-0.1920		0.3963	С	0	0	0	0	0
-3.3145	-0.4938		0.6988	С	0	0	0	0	0
-4.2219	0.2991		-0.2191	С	0	0	0	0	0
-3.5260	-0.2544		1.7451	Η	0	0	0	0	0
-3.4286	-2.0950		-0.4046	Η	0	0	0	0	0
-0.5237	1.1536		0.5180	Η	0	0	0	0	0

-	-5.2	307		1.8509 -1 4604	-0.3878	H O	0	0	0	0	0
	4 5	644		0 0394	1 3435	0	0	0	0	0	0
	1 0	468		0.0334	0 0938	0	0	0	0	0	0
	1.4	902		-1.0622	-0.7306	0	0	0	0	0	0
	3.5	808		1.8931	-0.5389	0	0	0	0	0	0
	4.2	219		-0.2991	0.2191	C	0	0	0	0	0
	3.3	145		0.4938	-0.6988	C	0	0	0	0	0
	1.8	563		0.1920	-0.3963	С	0	0	0	0	0
	3.5	260		0.2544	-1.7451	Н	0	0	0	0	0
	3.4	286		2.0950	0.4046	Н	0	0	0	0	0
	5.2	307		-1.8509	0.3878	Н	0	0	0	0	0
	0.5	237		-1.1536	-0.5180	Н	0	0	0	0	0
1	6	1	0	0							
2	6	2	0	0							
3	8	2	0	0							
4	8	1	0	0							
5	7	1	0	0							
6	7	1	0	0							
7	8	1	0	0							
10	·/	1	0	0							
10	5	1	0	0							
	Ţ	1	0	0							
12 12	4 10	⊥ 1	0	0							
1 J	⊥0 1 Q	⊥ 2	0	0							
15	20	2	0	0							
16	20	1	0	0							
17	19	1	0	0							
18	19	1	0	0							
19	20	1	0	0							
21	19	1	0	0							
22	17	1	0	0							
23	13	1	0	0							
24	16	1	0	0							
MI	END										

以下に、"HMA-2mols-F.ini"ファイル内容を示します。

HMA-2mols-F.ini ファイル MMFF94S CRYSTAL_SEARCH CSP_SPGP=(P21) CRYSTAL_OPTIMIZATION=RIGID CONGRD_MAXITR=9000 CSP_ROT_UNIT=COMPLEX

ここで、結晶構造予測で考慮する空間群は P21 とします。キーワードオプション

「CSP_ROT_UNIT=COMPLEX」を記述し、試行結晶構造を生成する際の分子回転がヒドロキシマロン酸2 分子単位で行われるようにします。この分子回転によってカルボキシル基間の水素結合が破壊されることは ありません。分子それぞれに対し分子回転を行いたい場合は、キーワードオプション

「CSP_ROT_UNIT=MOLECULE」を記述してください。ただし、「CSP_ROT_UNIT=MOLECULE」のみ を記述した場合、一方の分子のみに回転が適用されます。両分子を回転させたい場合はキーワード 「CSP ROT ALLMOL」を合わせて記述してください。

"HMA-2mols-F.mol"ファイルと"HMA-2mols-F.ini"を用いて CONFLEX を実行します。以下に、"HMA-2mols-F.csp"ファイル内容の一部を示します。

*** PRED	ICTED CR	YSTAL STR	RUCTURES:											
IDX	CID	E RNK	CRYST	INTRA	INTER	VOL	DES	A	в	С	ALPHA	BETA	GAMMA	SPGP
3	121	-1	-23.2528	34.0948	-57.3476	449.9753	1.7713	4.5668	8.8577	11.1319	90.0000	92.1618	90.0000	P21
17	61	2	-22.7106	34.0948	-56.8053	497.2886	1.6027	9.1893	5.6909	10.9466	90.0000	60.3070	90.0000	P21
32	2151	3	-21.9642	34.0948	-56.0590	473.9497	1.6817	22.5462	5.1339	4.5334	90.0000	64.5845	90.0000	P21
57	49	4	-21.9551	34.0948	-56.0499	473.9775	1.6816	20.7401	5.1337	4.5332	90.0000	79.1117	90.0000	P21
152	13	5	-21.6860	34.0948	-55.7808	451.6597	1.7647	8.0743	11.0125	5.0842	90.0000	92.4627	90.0000	P21
179	12	6	-21.6860	34.0948	-55.7808	451.6596	1.7647	5.0842	11.0125	9.3550	90.0000	120.4236	90.0000	P21
211	310	7	-21.5891	34.0948	-55.6839	472.5472	1.6867	8.4602	5.0223	12.2801	90.0000	115.0912	90.0000	P21
231	28	8	-21.5391	34.0948	-55.6338	461.9683	1.7253	5.1010	8.8055	10.8139	90.0000	107.9951	90.0000	P21
248	1098	9	-21.5332	34.0948	-55.6280	466.0401	1.7102	9.2049	4.5340	11.1716	90.0000	91.6874	90.0000	P21
249	103	10	-21.2629	34.0948	-55.3577	452.8963	1.7598	8.7698	11.0442	4.6842	90.0000	93.3812	90.0000	P21

図8 ヒドロキシマロン酸の予測結晶構造(HMA-2mols-F.cspファイル内容の一部)

ここで、エネルギー順位(E_RNK)1~10の予測結晶構造とX線結晶構造を比較すると(図9)、エネルギー順位3の予測構造がX線結晶構造とよく一致することが分かります。

図9 実験構造(左)と予測構造(右)の比較

参考文献

- [1] J. P. M. Lommerse et al., Acta Cryst. 2000, B56, 697.
- [2] W. D. S. Motherwell et al., Acta Cryst. 2002, B58, 647.
- [3] G. M. Day et al., Acta. Cryst. 2005, B61, 511.
- [4] G. M. Day et al., Acta Cryst. 2009, B65, 107.
- [5] D. A. Bardwell et al., Acta Cryst. 2011, B67, 535.
- [6] V. K. Belsky, P. M. Zorkii, Acta Cryst. 1977, A33, 1004.

APPENDIX 結晶構造予測計算の再実行

cpt ファイルの拡張子を rst に変更してください。分子構造ファイルと ini ファイルは、cpt ファイルを出力 した実行に用いたファイルを利用してください。ただし、ini ファイル内に「CSP_RESTART」キーワード を追加してください。

利用可能な空間群

International	Space	
Table	Group	Sub Information
Triclinic	Name	
1	D1	
2	P_1	
4 Monoclinic		
3	P2	unique avis h
3	I 2 	
3	P21	
4	P21	
	121 C2	
5	02 	
6	02	
6	PM	
7	PC	
7	PC	
/ 9		
0		
0		
9	00 CC	
10		
10	P2/M	
10	P2/M	
11	P21/M	
11	P21/M	
12	C2/M	unique axis b
12	C2/M	
13	P2/C	unique axis b
13	P2/C	unique axis c
14	P21/C	unique axis b
14	P21/C	unique axis c
15	02/0	unique axis b
15	C2/C	unique axis c
Orthornombic	Dooo	
10	P222	
17	P2221	
18	P21212	
19	P212121	
20	C2221	
21	C222	
22	+222	
23	1222	
24	1212121	
25	PMM2	
26	PMC21	
27	PCC2	
28	PMA2	

29	PCA21	
30	PNC2	
31	PMN21	
32	PBA2	
33	PNA21	
34	PNN2	
35	CMM2	
36	CMC21	
37	CCC2	
38	AMM2	
39	ABM2	
40	AMA2	
41	ABA2	
42	FMM2	
43	FDD2	
44	IMM2	
45	IBA2	
46	IMA2	
47	PMMM	
48	PNNN	oriain choice 1
48	PNNN	origin choice 2
49	PCCM	
50	PBAN	origin choice 1
50	PBAN	origin choice 2
51	PMMA	
52	PNNA	
53	PMNA	
54	PCCA	
55	PBAM	
56	PCCN	
57	PBCM	
58	PNNM	
59	PMMN	origin choice 1
59	PMMN	origin choice 2
60	PBCN	
61	PBCA	
62	PNMA	
63	CMCM	
64	CMCA	
65	CMMM	
	CCCM	
67	CMMA	
68		origin choice 1
68		origin choice 2
60		
70		origin choice 1
70	םסס י החחם	origin choice ?
70		
70		
72		
71		
74 Tetragonal	IIVIIVIA	
75	DA	
10	. 4	

76	P41	
77	P42	
78	P43	
79	14	
80	141	
81	P-4	
82	I-4	
83	P4/M	
84	P42/M	
85	P4/N	origin choice 1
85	P4/N	origin choice 2
86	P42/N	origin choice 1
86	P42/N	origin choice 2
87	1 42/N	
88	I41/Δ	origin choice 1
88	۱/۱/۸ ۱/۱/۵	origin choice 2
80	P/22	
09	D/212	
90	D/100	
91 00	D/1010	
92	D4222	
93	P4222	
94	P42212	
90	P4322	
90	F43212	
97	1422	
90		
100		
100		
101	P420M	
102	P4CC	
103	P4NC	
104	P42MC	
109	P42BC	
100		
107		
100		
110		
110		
110	P 420	
112	Г-420 Р 421M	
113	D 4010	
114	D /M2	
115	D 100	
118	P_4B2	
117	P_4N2	
110	I_4M2	
173	I-4C2	
120	I-40M	
121	I-42M	
123	P4/MMM	
123	P4/MCC	
125	P4/NBM	oriain choice 1
.20		eg eneres 1

	125	P4/NBM	origin choice 2
	126	P4/NNC	origin choice 1
	126	P4/NNC	origin choice 2
-	127	P4/MBM	
-	128	P4/MNC	
	129	P4/NMM	oriain choice 1
	129	P4/NMM	origin choice 2
	130	P4/NCC	origin choice 1
	130	P4/NCC	origin choice 2
	131	P42/MMC	erigin erielee 2
	132	P42/MCM	
	133	P42/NBC	origin choice 1
	133	P42/NBC	origin choice 2
	134	P42/NNM	origin choice 1
	13/	P42/NNM	origin choice 2
	134	P42/MBC	
	126		
	127		origin choice 1
	107		
 	13/		
	138	P42/NCM	
	138		origin choice 2
	139	I4/MIMM	
	140	I4/MCM	
	141	I41/AMD	origin choice 1
	141	I41/AMD	origin choice 2
	142	I41/ACD	origin choice 1
	142	I41/ACD	origin choice 2
Trigonal			
	143	P3	
	144	P31	
	145	P32	
	146	R3	hexagonal axes
	146	R3	rhombohedral axes
	147	P-3	
	148	R-3	hexagonal axes
	148	R-3	rhombohedral axes
	149	P312	
	150	P321	
	151	P3112	
	152	P3121	
	153	P3212	
	154	P3221	
	155	R32	hexagonal axes
	155	R32	rhombohedral axes
	156	P3M1	
	157	P31M	
	158	P3C1	
	159	P31C	
	160	R3M	hexagonal axes
	160	R3M	rhombohedral axes
	161	R3C	hexagonal axes
	161	R3C	rhombohedral axes
	160	P_31M	
	102	1-5110	

	163	P-31C	
	164	P-3M1	
	165	P-3C1	
	166	R-3M	hexagonal axes
	166	R-3M	rhombohedral axes
	167	R-3C	hexagonal axes
	167	R-3C	rhombohedral axes
Hexagonal			
Ŭ	168	P6	
	169	P61	
	170	P65	
	171	P62	
	172	P64	
	173	P63	
	174	P-6	
	175	P6/M	
	176	P63/M	
	177	P622	
	178	P6122	
	179	P6522	
	180	P6222	
	181	P6422	
	182	P6322	
	183	P6MM	
	184	P6CC	
	185	P63CM	
	186	P63MC	
	187	P-6M2	
	188	P-6C2	
	189	P-62M	
	190	P-62C	
	191	P6/MMM	
	192	P6/MCC	
	193	P63/MCM	
	194	P63/MMC	
Cubic	-		
	195	P23	
	196	F23	
	197	123	
	198	P213	
	199	1213	
	200	PM-3	
	201	PN-3	oriain choice 1
	201	PN-3	oriain choice 2
	202	FM-3	5
	203	FD-3	oriain choice 1
	203	FD-3	origin choice 2
	204	IM-3	
	205	PA-3	
	206	IA-3	
	207	P432	
	208	P4232	
	209	F432	
L			

210	F4132	
211	1432	
212	P4332	
213	P4132	
214	l4132	
215	P-43M	
216	F-43M	
217	I-43M	
218	P-43N	
219	F-43C	
220	I-43D	
221	PM-3M	
222	PN-3N	origin choice 1
222	PN-3N	origin choice 2
223	PM-3N	
224	PN-3M	origin choice 1
224	PN-3M	origin choice 2
225	FM-3M	
226	FM-3C	
227	FD-3M	origin choice 1
227	FD-3M	origin choice 2
228	FD-3C	origin choice 1
228	FD-3C	origin choice 2
229	IM-3M	
230	IA-3D	

ただし、 結晶構造予測では、「P4MM, P4BM, P42CM, P42NM, I4MM, I4CM, P-42M, P-421M, I-42M, P4/MMM, P4/NBM, P4/MBM, P4/NMM, P42/MCM, P42/NNM, P42/NNM, P42/NCM, I4MMM, I4/MCM, P3, P31, P32, R3, P-3, R-3, P312, P321, P3121, P3212, P3221, R32, P3M1, P31M, P3C1, P31C, R3M, R3C, P-31M, P-31C, P-3M1, P-3C1, R-3M, R-3C, P6, P61, P65, P62, P64, P63, P-6, P6/M, P63/M, P622, P6122, P6522, P6222, P6422, P6322, P6MM, P6CC, P63CM, P63MC, P-6M2, P-6C2, P-62M, P-62C, P6/MMM, P6/MCC, P63/MCM, P63/MMC, P23, F23, I23, P213, I213, PM-3, PN-3, FM-3, FD-3, IM-3, PA-3, IA-3, P432, P4232, F432, F4132, I432, P4332, P4132, I4132, P-43M, F-43M, I-43M, P-43N, F-43C, I-43D, PM-3M, PN-3N, PM-3M, FM-3M, FM-3C, FD-3M, FD-3C, IM-3M, IA-3D」の空間群は利用できません。

7	fil	用	म	能	た	扮	射	線
1	Ľ.,	/1.		ны	' d~	ᄱᄎ	21	ЛУК

	Κα1
Radiation	Wavelength (Å)
Mg	9.88955400
AI	8.33951400
Si	7.12558800
S	5.37220000
CI	4.72781800
Ar	4.19193800
K	3.74128380
Cr	2.28972600
Mn	2.10185400
Fe	1.93604100
Со	1.78899600
Ni	1.65793000

Cu	1.54059290
Ga	1.34012700
As	1.17595600
Se	1.10478000
Br	1.03975600
Kr	0.98026700
Zr	0.78595790
Мо	0.70931715
Ru	0.64309940
Rh	0.61329370
Pd	0.58546390
Ag	0.55942178
Cd	0.53501470
In	0.51212510
Sn	0.49061150
Sb	0.47037000
Xe	0.41635080
Ba	0.38512464
Nd	0.33185689
Pm	0.32016480
Sm	0.30904506
Но	0.26076080
Er	0.25237359
Tm	0.24434486
W	0.20901314
Au	0.18019780
Pb	0.16537816
Bi	0.16079030

6. 結晶表面解析

結晶表面の解析は、結晶の溶解や昇華など、結晶表面で起こる現象を理解する上で重要です。CONFLEX は、指定した結晶面における分子の相互作用エネルギーを求め、その結晶面の安定性等を評価することがで きます。

CONFLEX を用いた結晶表面解析

マロン酸誘導体の一つであるヒドロキシマロン酸の結晶を例に、CONFLEXにより結晶表面解析を行う方法について説明します。入力ファイル(HMA.cmf)を以下に示します。

<u>HMA.cmf ファイル</u>

```
data HMA
_symmetry_cell setting orthorhombic
symmetry space group name H-M 'P 21 21 21'
_ccdc_symmetry_space_group_name P212121
symmetry Int Tables number 19
loop
_symmetry_equiv pos site id
symmetry equiv pos as xyz
1 x,y,z
2 1/2+x, 1/2-y, -z
3 -x, 1/2+y, 1/2-z
4 1/2-x,-y,1/2+z
cell length a 4.494
cell length b 8.819
cell length c 10.882
cell angle beta 90
______cell_angle_gamma 90
loop_
_ccdc_atom_site_atom id number
_atom_site label
_atom_site_type symbol
_atom_site_fract x
_atom_site_fract y
_atom_site_fract_z
_ccdc_atom_site_symmetry
_ccdc_atom_site_base
1 01 0 0.12990 -0.13910 0.36040 1_555 1
2 02 0 -0.02490 0.09280 0.30700 1 555 2
3 03 0 0.01480 0.11550 0.66290 1 555 3
4 04 0 0.13030 -0.12820 0.62810 1 555 4
5 05 0 -0.42760 0.09790 0.48970 1 555 5
6 C1 C -0.02250 -0.01540 0.37600 1 555 6
7 C2 C -0.21190 -0.01520 0.49230 1 555 7
8 C3 C -0.00990 -0.00160 0.60420 1 555 8
9 H1 H -0.33200 -0.11200 0.49600 1 555 9
10 H2 H -0.39500 0.14900 0.45600 1 555 10
11 H3 H 0.23700 -0.13800 0.31000 1 555 11
12 H4 H 0.27100 -0.12000 0.68000 1 555 12
loop_
atom id
atom type
atom attach nh
atom attach h
atom charge
1 0 1 1 0
20100
3 0 1 0 0
4 0 1 1 0
```

50110 6 C 3 0 0 7 C 3 1 0 8 C 3 0 0 loop_ bond id 1 _bond_id_2 _bond_type_ccdc _bond_environment 1 6 S chain 2 6 D chain 3 8 D chain 4 8 S chain 5 7 S chain 6 7 S chain 7 8 S chain 9 7 S chain 10 5 S chain 11 1 S chain 12 4 S chain

結晶計算時、CONFLEX は球状の結晶を構築します(図1)。「CRYSTAL_PLANE=」キーワードを利用することで、指定した結晶面を露出させた半球結晶を構築し(図2)、その結晶面を構成する分子、あるいはその結晶面上に存在する分子の分子間相互作用エネルギー(式1)を求めることができます。なお、半球結晶の半径は「CRYSTAL RADIUS=」キーワードにより指定します。

$$E_{\rm mol} = \sum_{i}^{N} \sum_{j}^{M} E_{\rm inter_{ij}}$$

(1)

ここで、*E*mol は露出させた結晶面の中心に存在する分子(図2,赤色の分子.以下,基本分子と呼ぶ.)の 分子間相互作用エネルギーの和であり、*N*は基本分子の総原子数、*M*は基本分子以外の半球結晶に含まれる 全分子の総原子数です。

下記のようにキーワードを指定します。指定キーワードにより、(100),(010),(001)面を構成する分子の分子間相互作用エネルギーを求めることができます。事前に構造最適化を行う場合は 「CRYSTAL OPTIMIZATION=ALL」などとしてください。

HMA.ini ファイル

CRYSTAL CRYSTAL_OPTIMIZATION=NONE CRYSTAL_PLANE=(1,0,0) CRYSTAL_PLANE=(0,1,0) CRYSTAL_PLANE=(0,0,1)

"HMA.cmf"と"HMA.ini"の二つのファイルを用いて CONFLEX を実行すると、"HMA_100.pdb", "HMA_010_a.pdb", "HMA_010_b.pdb", "HMA_001.pdb"のファイルが出力されます。それぞれ、(100), (010), (001)面を露出させた半球結晶の pdb ファイルです(図3)。

図3結晶面を露出させた半球結晶

"HMA.bso"には下記の通り、基本分子(図3,赤色の分子)に関する分子間相互作用エネルギーの和が出力 されます。図3bと図3cは両者ともに(010)面を露出させた半球結晶ですが、基本分子が異なります。基本 分子はユーザーが指定しない限りプログラムが自動に決定します。指定結晶面において、複数のユニークな 分子が存在する場合(上記,(010)面の場合など)、それぞれの分子を基本分子としたときのエネルギー値 とpdbファイルがアルファベットにより区別され出力されます。

HMA.bso ファイル

* SUM OF INTERMOLECULAR INTERACTION ENERGIES OF MOLECULE [IN] THE CRYSTAL PLANE

			ENERGY
Н	K	L	(KCAL/MOL)
1	0	0	-10.7323
0	1	0	-38.4304 a
0	1	0	-39.2094 k
0	0	1	-21.1726

指定結晶面上に存在する分子の分子間相互作用エネルギーを求める場合は、

「CRYSTAL_PLANE_STATE=ON」キーワードを指定します。本キーワードを指定した場合に構築される半球結晶は図4になります。

図4:結晶面上の分子

"HMA.bso"には下記の通り、露出した結晶面上に存在する分子である基本分子(図4,赤色の分子)に関する分子間相互作用エネルギーの和が出力されます。図4bと図4cは両者ともに(010)面を露出させた半球結晶ですが、基本分子が異なります。

HMA.bso ファイル

* SUM OF INTERMOLECULAR INTERACTION ENERGIES OF MOLECULE [ON] THE CRYSTAL PLANE

			ENERGY
Н	K	L	(KCAL/MOL)
1	0	0	-34.2012
0	1	0	-5.7241 a
0	1	0	-6.5031 b
0	0	1	-23.7609

半球結晶の界面の位置、および基本分子は、プログラムが自動に決定しますが、界面の位置は 「CRYSTAL_PLANE_TRANS=」キーワード、基本分子は「CRYSTAL_PLANE_BASE=」キーワードにより 変更できます。

界面の位置を「CRYSTAL_PLANE_TRANS=」キーワードにより指定します。例えば、下記内容の ini ファイルを用意し実行すると、図 5b の半球結晶が構築されます。

HMA.iniファイル CRYSTAL CRYSTAL_OPTIMIZATION=NONE CRYSTAL_PLANE=(0,0,1) CRYSTAL_PLANE_TRANS=1.0

(a) 変更前

(b) 変更後

図5 界面の位置変更による影響

図 5a は図 3d を異なる視点で図示したものです。図 5a と図 5b を比較すると、界面の位置を変更したことで、青丸で示した分子が相互作用エネルギー計算に含まれることがわかります。必要に応じて、界面の位置を変更してください。なお、図 5 において、結晶面の位置が "0"であり、上方が "+"、下方が"-"方向になります。

基本分子を「CRYSTAL_PLANE_BASE=」により指定します。例えば、下記内容の ini ファイルを用意 し実行すると、図 6b の半球結晶が構築されます。

HMA.iniファイル CRYSTAL CRYSTAL_OPTIMIZATION=NONE CRYSTAL_PLANE=(1,0,0) CRYSTAL_PLANE_BASE=5

(a) 変更前

(b) 変更後

図6基本分子の変更による影響

図 6a は図3 a を異なる視点で図示したものです。図6 a と図6 b を比較すると、基本分子(図6,赤色の分子)が異なることがわかります。必要に応じて、基本分子を変更してください。図 6b を基本分子とした場合のエネルギー値は下記のとおりです。

HMA.bso ファイル

* SUM OF INTERMOLECULAR INTERACTION ENERGIES OF MOLECULE [IN] THE CRYSTAL PLANE

			ENERGY
Н	Κ	L	(KCAL/MOL)
1	0	0	-34.1536

なお、「**CRYSTAL_PLANE_BASE=**」で指定する値は「**CRYSTAL_PLANE_PRINT=ON**」キーワードにより 出力される情報(図7)から、IDXの値を指定してください。"POSITION"の値は、図6において、結晶面 の位置を "0"、上方が "+"、下方が"-"方向とした場合の分子の重心位置です。

IDX	POSITION (ANG	5.)
1	-0.224373	
2	-0.224373	
3	0.224373	
4	0.224373	
5	-2.022627	
6	-2.022627	
	(省略)	

図7「CRYSTAL_PLANE_PRINT=ON」キーワードによる出力情報

7. 溶媒効果を取り入れた構造最適化・振動解析計算

GB/SA モデルによる溶媒効果の導入

化学実験において、化合物を合成したり構造や物性値を測定したりする場合、その化合物は溶媒に溶かし た状態で扱うことがほとんどです。ですから、分子計算を用いて実験により得られた現象を解析する場合、 対象とする実験が化合物を溶液で扱っているのであれば、計算も溶液の状態を考慮したものでなければなり ません。しかし通常の分子力場などは、気相中の化合物の構造や振動などを再現するよう構築されており、 溶媒からの寄与は考慮されていません。分子シミュレーションで溶媒からの寄与を再現するためには、溶質 の周りに多くの溶媒分子を配置させた計算を行えばいいのですが、そうすると今度は溶媒分子の数だけ系の 自由度が増えてしまい計算時間が大幅に増加してしまいます。

この不具合を解消するため、分子計算の分野では「連続誘電体モデルによる溶媒効果の導入」が古くから 研究されています。CONFLEX では、この連続誘電体モデルの一つであり分子力学計算において最も広く用 いられている GB/SA モデルを採用しており、溶媒効果を取り入れた構造最適化・振動解析、配座探索、お よび溶媒和自由エネルギーの算出が可能です。なお現バージョンでは、力場は MMFF94s に、溶媒は水とオ クタノールに対応しています。

GB/SA モデルとは?

GB/SAモデルとは、溶媒による静電的な寄与を一般化 Born (Generalized Born, GB) 式を用いて算出し、 非静電的な寄与は溶媒和接触可能表面積 (Solvent-Accessible Surface Area, SA) を元に算出するモデルの ことです。溶媒によるエネルギーの増加分を

 $E_{\rm GB/SA} = E_{\rm pol} + E_{\rm cav} + E_{\rm vdW}$

と表すと、静電項は GB 式より

$$E_{\rm pol} = -166.0 \left(1 - \frac{1}{\varepsilon} \right) \sum_{i}^{n} \sum_{j}^{n} q_{i} q_{j} \left(r_{ij}^{2} + \alpha_{ij}^{2} e^{-D_{ij}} \right)^{-0.5}$$

となり、また非静電項は

$$E_{\rm cav} + E_{\rm vdW} = \sum_{k=1}^{N} \sigma_k SA_k$$

として算出します。ここで qi は原子 i 上の電荷、rij は原子 i-j 間距離、 α_{ij} および Dij は有効 Born 半径より求め られる値、 σ_k は表面張力係数、SAk は原子 k の溶媒和接触可能表面積です。

GB/SA モデルを導入した計算

CONFLEX で GB/SA モデルによる溶媒効果を導入した構造最適化・振動解析および配座探索を行う場合、.ini ファイルに"GBSA"というキーワードを記述します。図1に、溶媒効果を取り入れた配座探索を行う際の例を示します。

MMFF94s CONFLEX NOPRECHK GBSA

図1:GB/SAを導入した配座探索を行うための.iniファイルの例

表1に、グリシン2量体の neutral 型と zwitter ion 型(図2) での配座探索計算で得られた配座数を示します。気相中と溶媒効果を導入した場合とで、得られる配座数が異なっていることがわかります。

表1: (GLY)₂の neutral 型と zwitter ion 型の配座数							
	配座数	(気相中)	配座数	(溶媒中)			
Neutral		1	21				
Zwitter ion ¹⁾			3	13			

1) SEL=30.0, ESAV=30.0 で探索

図2: グリシン2量体の neutral 型(左)と zwitter ion 型(右)

また zwitter ion 型での最安定構造を比較すると、気相中では両末端が近い位置にある構造が最安定となりますが、溶媒効果を導入した場合では両末端が離れて平面に近い構造が最安定になります(図3参照)。

図3:グリシン2量体 zwitter ion 型の気相中(左)および溶媒中(右)での最安定構造

溶媒和自由エネルギーの定義と求め方

溶媒和自由エネルギー(ΔGsol)とは、ある分子の気相中と溶媒中での自由エネルギー差を表します。したがってこれを計算で求めるには、気相中と溶媒中両方での振動解析計算に基づいた自由エネルギー計算が 必要になります。

$\Delta G_{\rm sol} = G_{298,\rm sol} - G_{298,\rm gas}$

一方で、気相中と溶媒中での振動による自由エネルギーへの寄与が等しいと仮定すると、溶媒和自由エネ ルギーはそれぞれの条件で構造最適化して得られた全エネルギーの差となります。

 $\Delta G_{\rm sol} = E_{\rm sol} - E_{\rm gas}$

さらに、気相中と溶媒中での最適化構造が等しいと仮定すると、溶媒和自由エネルギーは

 $\Delta G_{\rm sol} = E_{\rm GB/SA}$

とすることが出来ます。

CONFLEX では、.ini ファイルに"GBSA_ANALYZER"というキーワードを記述することで、溶媒和自由エネルギーの算出を行います(図4)。また GBSA_ANALYZER=****で、****部分を FREE、OPTIMZ、あるいは SINGLE とすることで、上述した 3 つの近似レベルに基づいた溶媒和自由エネルギー計算を行うことが出来ます。

MMFF94s GBSA_ANALYZER=FREE

図4:溶媒和自由エネルギー(自由エネルギーの差)を求めるための.iniファイルの例

グリシン3量体(図5)の溶媒和自由エネルギー計算を行った際の、.bsoファイルの末尾に出力されるエネルギー値を図6に示します。上の行が振動の寄与を含まない全エネルギーの差を溶媒和自由エネルギーとしたときの値です。

図 5: グリシン3量体の neutral 型

図6:グリシン3量体の溶媒和自由エネルギー計算での.bsoファイルの末尾

8. アミノ酸残基置換機能

アミノ酸側鎖の置換

生体内に存在するタンパク質は何らかの影響でいくつかのアミノ酸残基が変異することがあります。数残 基しか変異していないタンパク質でも、その機能や活性が劇的に変化する場合があります。そのような現象 を計算機で調べるためには、あらかじめ用意されているアミノ酸配列が記述されている PDB フォーマット を使用し、それに対してアミノ酸の置換を行なうのがよいでしょう。また、PDB フォーマットを使用する 場合、多くの構造はX線結晶解析実験で得られており、運動の大きいアミノ酸側鎖の一部の構造が決定され ていない例があるため、不足分子を補う必要があります。

CONFLEX では、PDB ファイルに対してこれらのアミノ酸側鎖の置換や補足を行ない、その後の計算を行なうことができます。また、アミノ酸側鎖の不足情報のほかにも、主鎖の不足情報を得ることができます。

側鎖伸張アルゴリズム

アミノ酸側鎖の置換における不足分を補う処理と不足分子を補う処理は、同じアルゴリズムで行なっています。(長い側鎖から短い側鎖に置換する場合は、長い部分を消去するだけの処理を行なっています。)側 鎖を伸ばすアルゴリズムでは、他の原子との衝突を回避するために、非結合原子間距離を元にねじれ角を最 適化する手法をとっています。

側鎖伸張の実行

ここでは、不足原子を含む PDB ファイルを用いて、1)そのままの座標を用いて計算を行なう方法、と 2) 側鎖を伸張して計算を行なう方法を紹介します。

まず、PDB サイト(<u>http://www.rcsb.org/pdb/</u>)から"1OHR"を検索し、その PDB ファイルをダウンロード します。この構造は X 線結晶解析で得られた阻害剤を含む HIV-1 プロテアーゼで、99 アミノ酸残基の 2 量 体タンパク質です。この決定された構造には、「REMARK 470」で始まる行に不足原子の情報が記されてい ます。(図1)

REMARK	470									
REMARK	470	MISSING	ATC	M						
REMARK	470	THE FOLD	LOWI	NG RES	SIDUE	S HAVI	E MIS	SING A	ATOMS	(M=MODEL NUMBER;
REMARK	470	RES=RES	IDUE	NAME	; C=CI	HAIN	IDENT	IFIER	; SSE	Q=SEQUENCE NUMBER;
REMARK	470	I=INSER	FION	CODE)):					
REMARK	470	M RES	CSS	EQI A	ATOMS					
REMARK	470	GLN	А	7	CD	OE1	NE2			
REMARK	470	LYS	А	14	CE	ΝZ				
REMARK	470	GLU	А	34	CD	OE1	OE2			
REMARK	470	GLU	А	35	CD	OE1	OE2			
REMARK	470	ARG	А	41	CG	CD	NE	CZ	NH1	NH2
REMARK	470	LYS	А	43	CG	CD	CE	ΝZ		
REMARK	470	LYS	А	45	CG	CD	CE	ΝZ		
REMARK	470	LYS	А	55	CD	CE	ΝZ			
REMARK	470	GLN	А	61	CG	CD	OE1	NE2		
REMARK	470	LYS	А	70	CE	ΝZ				
REMARK	470	GLN	В	7	CD	OE1	NE2			
REMARK	470	LYS	В	14	CG	CD	CE	ΝZ		
REMARK	470	ARG	В	41	CG	CD	NE	CZ	NH1	NH2
REMARK	470	LYS	В	55	CE	ΝZ				
REMARK	470	GLN	В	61	CD	OE1	NE2			

図 1:10HR.pdbの 207~227 行目の抜粋。不足原子の情報が記載されている

ここから、「REMARK 470 GLN A 7 CD OE1 NE2」と書かれている行は、「A鎖の7番目の残基 であるグルタミンの Cδ、Oε1、Nε2 原子が不足している」のように読み取ることができます。ただし、 CONFLEX 内部では 282 行目以降の「ATOM」で始まる行を参照していますので、この部分を変更しても計 算には影響されません。

次に、原子が不足している状態で CONFLEX を実行してみます。設定ファイル(.ini ファイル)に 「PDB_CONECT」キーワードを記述して、阻害剤分子の二重結合を付け加えます。(図 2)

MMFF94S
PDB_CONECT=(1768,1774,2)
PDB CONECT=(1781,1782,2)
PDB CONECT=(1783,1784,2)
PDB_CONECT=(1785,1786,2)
PDB_CONECT=(1787,1788,2)
PDB_CONECT=(1792,1793,2)
PDB_CONECT=(1794,1795,2)
PDB_CONECT=(1796,1797,2)

図2:阻害剤分子の二重結合を考慮した設定ファイル(10HR.iniファイル)

括弧内の1つ目と2つ目の要素は、PDBファイルに記述されているシリアル番号、3つ目の要素は、結合 次数を表しています。

これらを用いて、CONFLEX を実行し、出力された 10HR.bso を確認すると、図 3 のような結果が得られ、 エラー終了していることが分かります。これらは、上述した不足原子と対応していることを確認してください。

PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN A 7
*PLEASE SET	KEYWORD(S)	:PDB MUTATE=(GLN, A, 7)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN A 14
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(LYS,A,14)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN A 34
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(GLU,A,34)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN A 35
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(GLU,A,35)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN A 41
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(ARG,A,41)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN A 43
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(LYS,A,43)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN A 45
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(LYS, A, 45)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN A 55
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(LYS,A,55)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN A 61
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(GLN,A,61)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN A 70
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(LYS,A,70)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN B 7
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(GLN, B, 7)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN B 14
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(LYS, B, 14)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN B 41
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(ARG, B, 41)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN B 55
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(LYS, B, 55)
PDB_EXT: ERROR	INCLUDE	UNKNOWN RESIDUE IN CHAIN B 61
*PLEASE SET	KEYWORD(S)	:PDB_MUTATE=(GLN, B, 61)

図3:原子が不足している PDB ファイルをそのまま実行した出力結果(10HR.bso)

1)元の座標を用いて計算を実行

このままでは計算を行なえないので、10HR.ini に「PDB_NOMUTATE」キーワードを付加して計算を行ないます。(図 4)

MMEE94S PDB_NOMUTATE
PDB_CONECT= $(1768, 1774, 2)$
PDB CONFCT = (1781, 1782, 2)
PDB_CONECT=(1783.1784.2)
PDB_CONECT=(1785.1786.2)
PDB_CONECT=(1787,1788,2)
PDB ⁻ CONECT=(1792,1793,2)
PDB ⁻ CONECT=(1794,1795,2)
PDB_CONECT=(1796,1797,2)

図4: PDB_NOMUTATE を加えた設定ファイル(10HR1.ini)

これを実行すると図5に示すような出力(1OHR1.bso)が得られ、エラーメッセージが警告メッセージに 変わっていることが確認できます。(※大きな分子のため、計算終了には非常に時間がかかりますので注意 してください。)

PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	А	7
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(GLN,A,7)		
PDE	B_EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	А	14
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(LYS,A,14)		
PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	А	34
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(GLU,A,34)		
PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	А	35
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(GLU, A, 35)		
PDE	B EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	А	41
	*PLEASE SET KEYWORD(S) :PDB MUTATE=(ARG,A,41)		
PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	А	43
	*PLEASE SET KEYWORD(S) :PDB MUTATE=(LYS,A,43)		
PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	А	45
	*PLEASE SET KEYWORD(S) :PDB MUTATE=(LYS,A,45)		
PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	А	55
	*PLEASE SET KEYWORD(S) :PDB MUTATE=(LYS,A,55)		
PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	А	61
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(GLN, A, 61)		
PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	А	70
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(LYS,A,70)		
PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	В	7
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(GLN, B, 7)		
PDE	B_EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	В	14
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(LYS, B, 14)		
PDE	B_EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	В	41
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(ARG, B, 41)		
PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	В	55
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(LYS, B, 55)		
PDE	EXT: WARNING INCLUDE UNKNOWN RESIDUE IN CHAIN	В	61
	*PLEASE SET KEYWORD(S) :PDB_MUTATE=(GLN, B, 61)		
1			

図5:不足原子を含んだ PDB ファイルをそのまま実行した出力結果(10HR1.bso)

2)側鎖を伸張して計算を実行

次に、不足原子を補って CONFLEX を実行する方法を紹介します。先ほど示した出力ファイルに 「PDB_MUTATE=(GLN,A,7)」 等を設定ファイルに記述するメッセージが確認できます。 「PDB_NOMUTATE」を消し、これらをコピーし、設定ファイル(10HR2.ini)に記述していきます。 (図 6)

MMFF94S
PDB_MUTATE=(GLN,A,7)
PDB_MUTATE=(LYS,A,14)
PDB_MUTATE=(GLU,A,34)
PDB_MUTATE=(GLU,A,35)
PDB_MUTATE=(ARG,A,41)
PDB_MUTATE=(LYS,A,43)
PDB_MUTATE=(LYS,A,45)
PDB_MUTATE=(LYS,A,55)
PDB_MUTATE=(GLN,A,61)
PDB_MUTATE=(LYS,A,70)
PDB_MUTATE=(GLN,B,7)
PDB_MUTATE=(LYS,B,14)
PDB_MUTATE=(ARG,B,41)
PDB_MUTATE=(LYS,B,55)
PDB_MUTATE=(GLN,B,61)
PDB_CONECT=(1783,1784,2)
PDB_CONECT=(1785,1786,2)
PDB_CONECT=(1787,1788,2)
PDB_CONECT=(1792,1793,2)
PDB_CONECT=(1794,1795,2)
PDB_CONECT=(1796,1797,2)
PDB_CONECT=(1781,1782,2)
PDB_CONECT=(1768,1774,2)

図 6: 側鎖補足設定(10HR2.ini)

このキーワードは、側鎖の置換および補足を行なうキーワードで、1 番目の要素は置換するアミノ酸名 (1文字表記、3文字表記、フルネーム表記に対応:表1)、2番目の要素はタンパク質鎖のID、3番目の要 素は残基番号を示しています。

表 1: PDB_MUTATE の第 1 要素のアミノ酸名対応表

ATTED_MOTATE \$P\$ T女示\$P\$ < Y 酸石和心衣							
	アミノ酸名	1 文字	3 文字	フルネーム			
	アラニン	A	ALA	ALANINE			
	システイン	С	CYS	CYSTEINE			
	アスパラギン酸	D	ASP	ASPARTIC_ACID			
	グルタミン酸	E	GLU	GLUTAMIC_ACID			
	フェニルアラニン	F	PHE	PHENYLALANINE			
	グリシン	G	GLY	GLYCINE			
	ヒスチジン	н	HIS	HISTIDINE			
	イソロイシン	I	ILE	ISOLEUCINE			
	リシン	к	LYS	LYSINE			
	ロイシン	L	LEU	LEUCINE			
	メチオニン	М	MET	METHIONINE			
	アスパラギン	N	ASN	ASPARAGINE			
	プロリン	Р	PRO	PROLINE			
	グルタミン	Q	GLN	GLUTAMINE			
	アルギニン	R	ARG	ARGININE			
	セリン	S	SER	SERINE			
	トレオニン	Т	THR	THREONINE			
	バリン	V	VAL	VALINE			
	トリプトファン	W	TRP	TRYPTOPHAN			
	チロシン	Y	TYR	TYROSINE			

これを実行すると、図7のように置換した箇所が示されます。

PDB_EXT:	MUTATE	RESIDUE	FROM	GLN	ТО	GLN
PDB_EXT:	MUTATE	RESIDUE	FROM	LYS	ТО	LYS
PDB EXT:	MUTATE	RESIDUE	FROM	GLU	ТО	GLU
PDB EXT:	MUTATE	RESIDUE	FROM	GLU	ТО	GLU
PDB_EXT:	MUTATE	RESIDUE	FROM	ARG	ТО	ARG
PDB_EXT:	MUTATE	RESIDUE	FROM	LYS	ТО	LYS
PDB_EXT:	MUTATE	RESIDUE	FROM	LYS	ТО	LYS
PDB_EXT:	MUTATE	RESIDUE	FROM	LYS	ТО	LYS
PDB_EXT:	MUTATE	RESIDUE	FROM	GLN	ТО	GLN
PDB_EXT:	MUTATE	RESIDUE	FROM	LYS	ТО	LYS
PDB_EXT:	MUTATE	RESIDUE	FROM	GLN	ТО	GLN
PDB_EXT:	MUTATE	RESIDUE	FROM	LYS	ТО	LYS
PDB_EXT:	MUTATE	RESIDUE	FROM	ARG	ТО	ARG
PDB_EXT:	MUTATE	RESIDUE	FROM	LYS	ТО	LYS
PDB_EXT:	MUTATE	RESIDUE	FROM	GLN	ТО	GLN

図7: 側鎖を補足した出力ファイル(10HR2.bso)

不足した原子を補足する場合、PDB ファイルから元の側鎖の残基名を取得しているため、元の側鎖の残 基名と置換後の側鎖の残基名が同じになってしまいますが、不足原子を補足することができます。

9. 水/オクタノール分配係数の計算

logP 値の計算

医薬品等の分子設計を行う上で、重要な指標となる物性値の1つに分配係数 logP があります。logP とは、 水/有機溶媒の二相系において、それぞれの相中に溶けている溶質濃度の比 P の常用対数であり、溶質の親 水性・疎水性を表わす重要な指標として頻繁に用いられています。

この logP 値は、溶質の水中および有機溶媒中での溶媒和自由エネルギーを元に算出することが出来ます。 CONFLEX では、GB/SA モデルを用いた水およびオクタノール中での溶媒和自由エネルギー計算から、 水 /オクタノール分配係数 logPow 値を自動的に算出することが出来ます。ここでは、logP 値計算の概要と、 入力の指定および出力される内容について説明します。尚、GB/SA モデルによる溶媒和自由エネルギー計 算の詳細につきましては、「溶媒効果を取り入れた構造最適化・振動解析計算」のチュートリアルを参照し てください。

logP 値と溶媒和自由エネルギー

水/オクタノール分配係数 $\log P_{ow}$ 値と、水およびオクタノール中での溶媒和自由エネルギー ($\Delta G_{wat}, \Delta G_{oct}$)には、以下のような関係があります。

 $\log P_{ov} = (\Delta G_{vat} - \Delta G_{oct})/2.30RT$

ここでRは気体定数、Tは絶対温度です。

logP 値計算の設定

CONFLEX では、.ini ファイルに"LOGP"というキーワードを記述することで、logPow値の算出を行います (図1)。また LOGP=****で、****部分を FREE、OPTIMZ、あるいは SINGLE とすることで、3つの近似 レベルに基づいた溶媒和自由エネルギー計算から logPow値の算出を行うことが出来ます。それぞれの近似レ ベルの詳細につきましては、「溶媒効果を取り入れた構造最適化・振動解析計算」を参照ください。

MMFF94s LOGP=FREE

図1:logP値を求める時の.iniファイルの例

1-Butanolの log *P*_{ow} 計算を行った際の出力を示します。実験値は 0.88 です。

計算は、気相中--オクタノール中--水中の順で行います。オクタノール中および水中での計算が終了する と、それぞれの溶媒和自由エネルギーが出力されます(図2、3)。

> SOLVATION ENERGY (DIFF. OF TOTAL ENERGY) = -5.85364 (KCAL/MOL) SOLVATION ENERGY (DIFF. OF FREE ENERGY) = -5.92111 (KCAL/MOL)

図 2:1-Butanol のオクタノール中での溶媒和自由エネルギー

SOLVATION ENERGY (DIFF. OF TOTAL ENERGY) = -5.85364 (KCAL/MOL) SOLVATION ENERGY (DIFF. OF FREE ENERGY) = -5.92111 (KCAL/MOL)

図 3:1-Butanol の水中での溶媒和自由エネルギー

全ての計算が終了した後、.bso ファイルの末尾には図 4 のように溶媒和自由エネルギーから求められた logPow 値(0.875)が出力されます。

._____/ ! *** SUMMARY OF LOGP CALCULATION *** ! ! 1 FORMULA: LOGP = (DELTAG(WATER) - DELTAG(OCTANOL))/(2.30*R*T) (R = 1.9872065 (CAL/(K*MOL)) T = 298.15 (KELVIN)) ! 1 1 ! ! DELTAG(WATER) = -4.72883 (KCAL/MOL) DELTAG(OCTANOL) = -5.92111 (KCAL/MOL) ! 1 1 ! LOGP = 0.875 ! 1 1 · I

図 4:1-Butanolの logPow計算での.bso ファイルの末尾

10. NMR解析機能について

はじめに

有機化合物を解析する上で、NMR 解析は欠くことのできない測定法の一つです。特に、NMR 解析から得 られるビシナル・プロトンープロトン結合定数(³JHH)は、改良 Karplus 式を用いることによって Csp3-Csp3 結合周りのねじれ角を予測できることから、有機化合物の測定中の立体構造を推定することができます。最 近では、この結合定数に基づくねじれ角と、NMR-NOE 情報による近接プロトン間距離の予測値を組み合わ せることによって、タンパク質など生体高分子の立体構造を予測することも可能になっています。ところが、 分子が大きくなるにつれ考慮すべき配座異性体の数も増加するため、NMR 解析で得られる結合定数などの 測定値は配座異性体混合物の平均値として観測されます。このため、測定値だけを頼りにしてしまうと、現 実には存在しないような「不自然な」平均立体構造が予測される可能性が高まります。

CONFLEX に新たに導入された NMR 解析機能は、配座探索機能によって創出された配座異性体の一つひ とつに対して³JHH値を計算することができ、また、存在比に基づく熱力学平均値を求めることもできます。 そして、こうして得られた計算値を測定値と比較することによって、NMR 解析で観測されている分子の状 態を推定し、物性や反応性に及ぼす立体効果を予測するなど様々な立体配座解析や、より正確な立体構造の 解析を支援することができます。

ここでは、CONFLEX の NMR 解析機能を利用するための手順について概説します。

改良 Karplus-Imai 式について

CONFLEX に導入された NMR 解析機能において、³JHH 値の計算は改良 Karplus 式の一つである Karplus-Imai 式 (eq. 1) を用います。

$${}^{3}J_{HH} = A\cos\theta + B\cos 2\theta + C\cos 3\theta + D\cos^{2} 2\theta + W \left(E\cos\theta \sum \Delta \chi_{i}\cos\phi_{i} + F \sum \Delta \chi_{i}\cos 2\phi_{i} + G \sum \Delta \chi_{i}\right)$$
(eq. 1)
+ H {($\omega_{1} + \omega_{2}$)/2 - 110.0 }+ I(r_{C-C} - 1.5)+ K $\sum \Delta \chi_{j}^{\beta}\cos 2\psi_{j}$
+ L/ r^{4} + M

ここで定数と記号はそれぞれ次のような意味です。

- ³J_{HH}:ビシナル・プロトン—プロトン結合定数
 - θ:カップリングした水素原子間の二面角
 - **Δ**χ_i: Mullay 法で求めた置換基グループの電気陰性度と水素原子の電気陰性度 (=2.08)の差
 - **♦***i* : 水素原子と置換基との二面角
- $\Delta \chi_{j}^{\beta}$: Mullayによる β 位置換基グループの電気陰性度とアルカンの電気陰性度の 平均値 (=2.40) との差
 - Ψ_i : カップリング水素と β 位置換基との二面角
- **ω**₁,**ω**₂: H-C-C 結合角

*r*_{C-C} : C-C 間結合長

- カップリング水素とそれに最も近い原子(炭素原子に結合している原子と
- r: α 位置換基を除く) との距離
- A-I, K: 定数
- **W**, M: 定数(置換基により異なる)
 - L: 定数(最近接の原子が炭素か酸素かによって異なる)

Karplus-Imai 式の詳細は文献1を参照してください。また、CONFLEX に導入された NMR 解析機能は、原則として、日本化学プログラム交換機構(JCPE、現在、日本コンピュータ化学会)から公開されていた 3JHH2 [2]に収められている 3JHHM 法に準拠します。

入力構造と最適化構造のNMR-³J_{HH}計算

NMR 解析機能を使って³JHH 値を計算するためには、CONFLEX の初期設定ファイル(以下、「.ini ファイル」)に次のように記述します。

NMR			

CONFLEX はデフォルトの設定として、 MMFF94S 力場による構造最適化が実行されますので、³JHH 値の 計算は最適化構造に対して行われます。入力構造に対して³JHH 値の計算を行いたい場合は、次のように指定 してください。

NMR	NOOPT		

このような.ini ファイルを準備して CONFLEX を実行すると、新たに拡張子が「.nmr」と付いた NMR 結果ファイル(以下、「.nmr ファイル」)が作成されます。

主な出力内容として、前半部分は次のようになります。ここで注意すべきことは、「3JHHM TABLES:」 に記載された、カップリングしているプロトン対(「HI」と「HJ」の列)の原子シリアル番号です。 CONFLEX では、計算可能なすべてのカップリングしているプロトン対を自動判定します。したがって、タ ーゲットになるプロトン対の原子シリアル番号は、予め GUI を使って確認しておく必要があります。

¹ "An Extension of multiparameteric Karplus equation", Keisuke Imai, Eiji Ōsawa, *Tetrahedron Lett.*, Vol. 30, No. 32, 4251-4254 (1989).

² "3JHH2", Keisuke Imai, Eiji Ōsawa, *JCPE*, P012.

1 NMR-3, THHM: VICINAL H-H COUPLING CONSTANTS CALCULATION 1 -_____ I. DATE: 2009/06/22 TIME: 21:34:41.72 nmr-noopt-DMBUOL: I-7199 3,3-DIMETHYL-1-MERCAPTO-2-BUTANOL 1 EMPIRICAL FORMULA: C6H14OS(LP2) MW = 134.076! FORCE FIELD: EMM2 (2004-11-27_HG) TOTAL NUMBER OF CONFORMERS FOUND: 1 1 TEMPERATURE: 298.15 KELVIN ! 3JHHM (KARPLUS-IMAI) EQUATION FORMULA: 3JHH = P1*COS(A) + P2*COS(2*A) + P3*COS(3*A) + P4*COS(2*A)*COS(2*A) +1 C1*[P5*ELENEG*COS(A)*COS(B) + P6*ELENEG*COS(2*B) + P7*ELENEG] + T P8*(ANGLE - 110.0) + P9*(LENGTH - 1.5) + P10*E(BETA)*|COS(2*C)| + 1 P11/R(C) **4 + P12/R(O) **4 + CONSTANT 1 PARAMETERS: ! P2 P3 P4 ! P1 P5 P6 PJ 0.8319 P11
 P1
 P2
 P3
 P4
 P5

 -1.2246
 5.0935
 -0.1055
 0.5711
 0.8319

 P7
 P8
 P9
 P10
 P11

 0.0345
 -0.2058
 -8.9222
 0.1438
 -8.9395
 -1.2246 0.0433 T P12 6.9202 ۱ MONO1,1-DI1,2-DITRI1.00002.55001.16002.29007.50757.03066.47936.5432 TETRA WEIGHT 1.4000 1 CONSTANT 5.5319 1. 1 3JHHM TABLES: L NUMBER OF CENTRAL BONDS HAVING VICINAL COUPLING PROTONS: 1 1 LIST OF COUPLING PROTON PAIRS AND CENTRAL BONDS: ! COUPLED NO HI I J НJ T -----_____ _____ ____ 9 2 1 1 L 11 2 10 1 2 11 _____ _ _ _ _ _ _ _ _ 1 = . . .

この例では、結合 C1-C2 において、C1 に結合する H9 と H10、および C2 に結合する H11 から二つのプ ロトン対が計算対象になっていることが分かります。

後半部分の出力は次のようになります。

GEOMETRICAL I	PARAMETERS OF 1	EACH CONFORM	======================================								
NO. CONF	ID ENERGY	DISTRIB	I-J B	OND	LENGTH	H-H PA	AIR	ЗЈНН	PHI	ANGLE	
1 1	- 11.9139 - 11.9139	100.0000 100.0000	1 - 1 -	2 2	1.5323 1.5323	9 - 10 -	11 11	2.010 10.063	-66.928 173.879	110.758 110.105	108.891 108.891
AVERAGED VICIN 3JHI 3JHI	HAL H-H COUPLIN H (1) = 1 H (2) = 1	NG CONSTANTS 2.010 (Hz) 0.063 (Hz)	:					===== ! ! ! !			

まず、³JHH 値を計算するため必要なパラメータとなるプロトン対周りの内部座標が出力されます。続いて、 計算された³JHH 値と、同じ C-C 結合周りに複数のプロトン対がある場合には、その平均値が出力されます。 この例では、C1-C2 結合間の二つのプロトン対に対する³JH9,H10 と³JH9,H11 およびそれらの平均値³Jav を 確認できます。

複数の配座異性体の NMR-3JHH 計算

複数の配座異性体に対して³J_{HH}計算を行う場合、(当然のことではありますが)予め CONFLEX の配座探 索機能を使って配座探索を行い、次の二つのファイルの存在を確認してください。

(A) 入力構造ファイル(例えば、.mol や.pdb など)

(B) 拡張子「.fxf」と付いた配座探索結果ファイル(以下、「.fxf ファイル」)

これらのファイルが確認し、必要ならばバックアップを行った後、次のような.ini ファイルを準備します。

NMR CONFLEX

このような.iniファイルを準備して CONFLEX を実行すると、CONFLEX は.fxf ファイルから配座異性体の 構造やエネルギーに関する情報を読み込んだ後に、全ての配座異性体に対して NMR-³JHH 計算を行います。 そして、前術の例と同様に、.nmr ファイルが作成されます。また、出力内容も、少なくとも前半部分は前述 の例と同じです。

.nmr ファイルの後半部分の内容は次のようになります。

••												
												!
GEOMETH	RICAL PARAM	METERS OF EA	ACH CONFORME	R:								
NO.	CONF ID	ENERGY	DISTRIB	I-J B	OND	LENGTH	H-H PA	IR	ЗЈНН	PHI	ANGLE	
					1.0	1 5 3 3 0	10		0 104	121 200	110 074	!
1	00022	00.4894	03.1/90	2 -	10	1.5336	13 -	1 5	0.124	174.00	110.074	
				3 -	11	1 5302	14 -	23	9.301 8 780	167 525	100.002	
				4 -	8	1 5313	15 -	19	9 039	-175 413	109.623	
				4 -	8	1 5313	15 -	20	2 896	62 735	109.825	
				10 -	11	1.5260	22 -	23	8.660	-167.242	110.322	
												!
2	00003	62.9538	11.8954	2 -	10	1.5331	13 -	22	8.141	172.091	110.934	
				3 -	4	1.5366	14 -	15	9.511	-172.467	110.408	
				3 -	11	1.5304	14 -	23	8.487	166.400	109.815	
				4 -	8	1.5331	15 -	19	0.672	63.929	109.633	
				4 -	8	1.5331	15 -	20	3.056	-56.627	108.889	
				10 -	11	1.5252	22 -	23	8.720	-167.634	110.317	
3	00001	61 6760	7 5419	2 -	10	1 5344	13 -	22	8 081	171 075	110 850	:
0	00001	01.0700	.0110	3 -	4	1.5383	14 -	15	9.534	-175.773	109.844	
				3 -	11	1.5300	14 -	23	8.920	168.466	109.831	
				4 -	8	1.5338	15 -	19	4.355	-69.124	108.917	
				4 -	8	1.5338	15 -	20	9.136	172.895	109.373	
				10 -	11	1.5263	22 -	23	8.643	-167.150	110.329	
					1.0	1 5 2 4 1	10			171 404	110 710	!
4	00028	66./596	5.4062	2 -	10	1.5341	13 -	22	8.19/	1/1.424	110./18	
				3 -	4	1.5340	14 -	15	9.396	-1/5.291	110.604	
					11	1 5313	15 -	10	0./ <i>3</i> / 8.956	-174 709	109.000	
				4 -	8	1 5313	15 -	20	2 854	63 428	109.004	
				10 -	11	1.5269	22 -	23	8.565	-166.383	110.327	
												!
••												
								=====	!			
									!			
AVERAGEI	D VICINAL I	H-H COUPLING	G CONSTANTS:						1			
	ЗЛНН (1) = 8.	127 (Hz)									
		-,										
	ЗЈНН (2) = 9.	.417 (Hz)						!			
									!			
	ЗЈНН (J) = 8.	./60 (Hz)						!			
	ЗЛНН (4) = 7	.378 (Hz)									
	ЗЈНН (5) = 3.	438 (Hz)									
	3JHH ()	AV.) = 5.	408 (Hz)						1			
		,	- • •						1			
	ЗЈНН (6) = 8.	.660 (Hz)						!			
									!			
									!			

各配座異性体の複数のプロトン対について、³JHH 値と内部座標情報を確認することができ、また、ファイルの最後には、ボルツマン分布則に基づく熱力学平均値が出力されます(前述の例とは異なる分子です)。

優位なすべての配座異性体とそれぞれのエネルギー評価が、NMR 観測中の分子の状態を正しく表現しているとすれば、熱力学平均した³JHH計算値が、実際の測定値と一致する(近い値になる)ことが十分に期待できます。

注意点と今後の予定

CONFLEX の NMR 解析機能を使って計算した³JHH 値の精度は、前述した Karplus-Imai 式とそのパラメー タに依存します。特に、Karplus-Imai 式のパラメータは、MM2 力場を基準として決定されているため、 CONFLEX の標準力場である MMFF94s の最適化構造に対しては、十分な精度を得られないことがあります。 したがって、CONFLEX の NMR 解析機能を適用する場合は、EMM2 力場を使って構造最適化を行った方が 良い結果が得られる可能性が高くなります。

また、 Karplus-Imai 式のパラメータは、有効誘電率のみを変えて溶媒効果を考慮していますので、 CONFLEX に導入されている GB/SA 法を基づく溶媒効果を適用しても、よい結果が得られないことがあり ます。この場合は、「DIELEC=」キーワードを使って有効誘電率を変更することによって、良い結果が得 られることがあります。

今後、パラメータの改良や新しい改良 Karplus 式、さらには²J_{CH} 値計算法や NOE 解析法などの導入を検 討し、多面的な NMR 解析法の支援システムへと発展させる予定です。また、これらの計算技術に関する情 報提供やご提案などのご協力を歓迎いたします。

11. 類似した異性体構造の分類: 配座クラスタリング

配座クラスタリングとは

配座異性体をいくつかの意味のあるグループに分類することを、配座クラスタリングと呼びます。構造パ ラメーターを指標として構造的に似ている配座をグループ分けすることで、例えば最安定構造やX線結晶構 造に近い配座がどの程度のエネルギーの範囲でどのくらい存在するかを見積もることが出来ます。

配座クラスタリングを行うためには、配座異性体を関係付ける指標が必要となります。ある配座に対して どの配座がどのくらい似ているかを評価する指標は配座間距離と呼ばれ、CONFLEX では構造パラメーター として2面角かデカルト座標の RMSD 値を選択してクラスタリングすることが出来ます。以下の例では、 2面角の RMSD 値を配座間距離としたクラスタリングを示します。

n-pentane の全配座異性体のクラスタリング

最初に簡単な例として、n-pentaneの全ての配座異性体についてクラスタリングを行った例を示します。 まず、n-pentaneの配座探索を以下の設定で実行します

> MMFF94S CONFLEX SEL=4 SEARCH=ENERGY CHECK=(TORSION,NOENERGY)

上記の設定では11種の配座異性体が得られます。それぞれの配座異性体での C-C-C-C2 面角の値は以下の 表の通りです。

表	:	各配座の	C-C-	C-C	2	面角
---	---	------	------	-----	---	----

No.	Total energy	Dihedral a	ngle
		1-5-8-11	5-8-11-14
1	-5.2718	180.0	180.0
2	-4.4419	-65.7	-175.7
3	-4.4419	65.7	175.7
4	-4.4419	175.7	65.7
5	-4.4419	-175.7	-65.7
6	-3.8487	60.3	60.3
7	-3.8487	-60.3	-60.3
8	-1.5718	64.5	-95.3
9	-1.5718	-64.5	95.3
10	-1.5718	-95.3	64.5
11	-1.5718	95.3	-64.5

次に、得られた配座異性体を C5-C8 結合周りの2面角を配座間距離の指標としてクラスタリングします。.ini ファイルは以下のようになります。

MMFF94S CONFLEX NOSEARCH CLUSTERING CCLUS_DISTANCE=TORSION CCLUS_LIMIT=10.0 CCLUS_NREF=1 CCLUS_IREF=(5,8) ここでキーワード「CLUSTERING」はクラスタリングの実行、「CCLUS_DISTANCE=TORSION」は配座 間距離の算出に2面角を使用する際の指定です。また「CCLUS_LIMIT=10.0」は配座間距離が 10.0 以内の 配座を一つのグループにする指定で、「CCLUS_NREF=1」および「CCLUS_IREF=(5,8)」はそれぞれクラ スタリングの指標とする結合の数とその番号を示しています。

このように指定して計算すると、クラスタリングの結果が.clu という拡張子の付いたファイルに出力され ます。 このファイルでは、最初に配座数やクラスタリングの指標となる2面角のインデックスなどの情報 が表示されます。

CONFLEX CONFORMATIONAL CLUSTERING FILE
CLUSTERING INFORMATION
LUSTERING METHOD: SINGLE LINKAGE
NUMBER OF CONFORMERS CLUSTERED = 11 CONFORMERS (TOTAL 11 CONFORMERS)
DISTANCE (SIMILARITY) INDEX: TORSIONAL DISTANCE
DISTANCE DEFINITIONS: 1 TORSIONS
1: 1- 5- 8- 11

次に、各配座間距離の一覧が出力されます。ここで、"SORTED NUMBER"はエネルギーの安定な順、"CID NUMBER"は配座探索中に見出された順に対応します。この出力から、例えば2番と9番の配座の C1-C5-C8-C11 角の差が 1.1717 であることがわかります。

# DIST	ANCE MATRI	X ELEMENT	s 					
NUMBER	OF DISTAN SORTED NU	ICE MATIRX IMBER	ELEMENTS = CID NUMB	55 55		DISTANCE		
	 I	 J	I	 J	RMSD	MAXD	DRMSD	
	2	9	2	9	1.1717	1.1717	0.0000	
	3	8	3	6	1.1717	-1.1717	0.0000	
	6	8	7	6	4.2046	4.2046	3.0329	
	7	9	8	9	4.2046	-4.2046	0.0000	
	1	4	1	4	4.3141	4.3141	0.1095	

最後に、設定した閾値(CCLUS_LIMIT=10.0)に対応したクラスタリングの結果が出力されます。ここで 出力されている番号は CID NUMBER で、エネルギーの低い順に出力されます。

======= # RESULT # MIN= ==========	- 1,	====== 1 I MAX= ======	N CID NUME 3, AVE	======= ER RAGE= ========	2.00,	DISPERSIO	====== N= =======	5.640	
DISTANCE	THRE	SHOLD=	10.00						
NCLUSTER	S=	5							
SIZE=	3								
	1		4	5					
SIZE=	3								
	2		8	9					
SIZE=	3								
	3		7	6					
SIZE=	1								
	10								
SIZE=	1								
	11								

同じ配座探索の結果を用いて、今度は2つの **C-C-C**2 面角を指標にしたクラスタリングを行います。ini ファイルは以下のとおりです(赤字は変更点)。

MMFF94S CONFLEX NOSEARCH
CLUSTERING
CCLUS_DISTANCE=TORSION
CCLUS_LIMIT=70.0
CCLUS_NREF=2
CCLUS_IREF=(5,8)
CCLUS_IREF=(8,11)

各配座間距離は以下のように変わります。

======	======							===	
# DIST.	ANCE MA'	TRIX ELEMENT:	S 						
NUMBER	OF DISTANCE MATIRX SORTED NUMBER		ELEMENTS CID NUM	= 55 IBER	DISTANCE				
	I	J	I	J	RMSD	MAXD	DRMSD		
	8	10	6	10	30.8622	30.8622	0.0000		
	9	11	9	11	30.8622	-30.8622	0.0000		
	2	9	2	9	62.9213	-88.9765	32.0591		
	3	8	3	6	62.9213	88.9765	0.0000		
	4	10	4	10	62.9213	-88.9765	0.0000		
	5	11	5	11	62.9213	88.9765	0.0000		

閾値を 70.0 (CCLUS_LIMIT=70.0) に設定していますので、CID NUMBER 2,5,9,11 および 3,4,6,10 が同じ グループに分類されます。

# RESUL1 # MIN=	- 1 I 1, MAX=	N CID NUMBER 4, AVERAG	E= 2.0	00, DISPERSION=	6.840	
DISTANCE	THRESHOLD=	70.00				
NCLUSTEF	RS= 5					
SIZE=	1					
	1					
SIZE=	4					
	2	9	5	11		
SIZE=	4					
	3	6	4	10		
SIZE=	1					
	7					
SIZE=	1					
	8					

β-Glucose の全配座異性体のクラスタリング

β-Glucose の全配座異性体について、6員環部分の2面角から配座感距離を求めクラスタリングを行います。.iniファイルは以下のとおりです。

MMFF94S CONFLEX NOSEARCH						
CLUSTERING						
CCLUS_DISTANCE=TORSION						
CCLUS_LIMIT=10.0						
CCLUS_NREF=6						
CCLUS_IREF=(1,2)						
CCLUS_IREF=(2,10)						
CCLUS_IREF=(10,11)						
CCLUS_IREF=(11,3)						
CCLUS_IREF=(3,4)						
CCLUS_IREF=(4,1)						

クラスタリングの結果、環の配座の違いにより7つのグループに分類されました。各グループの最安定構造 を示します。

===== # RESU # MIN= ======	ULT - - 1,	1 IN CID MAX= 122,	NUMBER AVERAGE=	31.00, DISPE	ERSION= 2499.8	316
DISTAN	ICE THRE	SHOLD= 10	.00			
NCLUST	'ERS=	7				
SIZE=	122					
	22	3	1	28	21	4
	12	13	2	59	14	127
	40	35	64	131	20	68
•••						
SIZE=	33					
	76	31	29	99	137	104
	119	109	26	114	17	188
• • •						
SIZE=	31					
	50	16	30	130	138	85
	71	84	147	159	129	41
•••						
SIZE=	4					
	32	24	10	7		
SIZE=	26					
	205	214	190	197	208	207
	218	189	202	212	187	198
•••	2					
SIZE=	3	1.0	1.1			
0185	27	19	11			
SIZE=	1 18					
	±0					

No. 085 (ID=076)

No. 090 (ID=050)

No. 132 (ID=205)

No. 192 (ID=027)

No.216 (ID=018)
12. ホストーリガンド配位探索計算による安定な分子間配位構造の探索

ある分子または分子集合体に対して、他のイオン種や分子がどの位置にどのような向きで配位するのかを

図1: 分子または分子群(ホスト)に対して、新たな分子 (リガンド)がどこに配位するのが安定かを探索する 探索し(図1)それぞれの安定性を評価 することは、錯体や分子クラスターの安 定構造を特定するのに有用です。 CONFLEX に搭載された「ホストーリガン ド配位探索(Host-Ligand Coordination Search)」機能により、分子または分子 集合体を"ホスト"と指定し、その周囲 にイオン種や分子を自動的に配置してそ れぞれ構造最適化やエネルギー計算を行 うことが可能です。この機能を利用して 安定なクラスター構造を見出すことで、 分子認識やホストーゲスト化学などの超分 子化学分野への応用も期待できます。

12.1 計算手法の概要

まずホストとなる分子(群)を囲む正多面体を設定します。CONFLEXで用意している正多面体は図2に 示す4種類で、デフォルトでは正二十面体(Icosahedron)が選択されます。

Tetrahedron

Hexahedron (Cube)

Octahedron

Icosahedron

これら多面体の各頂点に、リガンドとなる分子を配置します。配置場所をより細かくしたい場合は、「HLSEARCH_HOST_NDIV=n」により各面を分割することで配置点の数を増やします(図3)。

図2:選択可能な正多面体

図3:分割数と配置点(正三角形の場合)

最後に、配置したリガンド分子を x,y,z 軸周りにそれぞれ回転させて初期配置構造を作り(図4)、構造最 適化後得られた構造をエネルギー順に出力します。リガンドを回転させる角度は

「HLSEARCH_LIGAND_ROT=(I,m,n)」で指定でき、デフォルトでは 360/6=60°刻みです(I=m=n=6)。こ れを例えば 45°刻みにする場合は「HLSEARCH_LIGAND_ROT=(8,8,8)」とします。

図4:各配置点上でリガンドとなる分子を回転させる

12.2 酢酸二量体のエネルギー極小構造の探索

酢酸の二量体(図5、座標データは付録1)について、それぞれがどのような位置関係・配向にある時にエネルギー極小に成り得るのかを、ホストーリガンド配位探索により求めます。まず2つの分子の座標を付録 1のように1つの mol ファイルに含め、次に.ini ファイルに

MMFF94S HLSEARCH

と設定して計算を行いますと、8通りの二量体構造が得られます(図6)。またエネルギー値のリストは、 配座探索計算と同様 Property Box に表示されます(図7)。

図5: 酢酸二量体の初期構造

No.1

No.3

No.4

No.5

No.6

No.7

No.8

図6: 酢酸二量体のエネルギー極小構造

	Conformers (Population)
1	-69.9071 kcal/mol (99.9995 %)
2	-62.5393 kcal/mol (0.0004 %)
3	-61.8533 kcal/mol (0.0001 %)
4	-59.3036 kcal/mol (0.0000 %)
5	-55.9525 kcal/mol (0.0000 %)
6	-55.7737 kcal/mol (0.0000 %)
7	-54.9498 kcal/mol (0.0000 %)
8	-54.314 kcal/mol (0.0000 %)

図7: 酢酸二量体のエネルギー極小構造のエネルギーリスト

12.3 グルコース分子への水分子の配位探索

ここではα-D-グルコース分子(以下グルコース)に水分子を1つおよび2つ配位した構造を探索します。 最初にグルコース単体での配座探索を行い最安定構造を求めてから(図8)、そこに水分子を1つ配位した 入力構造を作成(図9、座標データは付録2)します。

図8: α-D-グルコースの最安定配座 (MMFF94s)

次にこの入力構造を用いて以下のキーワードで計算を行います。

HLSEARCH OPT=GROUP MOL_GROUP=(25,1)

ここで「**OPT=GROUP**」および「**MOL_GROUP=(25,1)**」としたことで、グルコースの構造は固定したまま で水分子の位置と構造のみ最適化を行います。

上記の計算により、10通りの構造が得られました。最安定構造を図10に示します。

図9:グルコース+水分子の入力構造

図10:グルコース+水分子の最安定配置構造(MMFF94s)

図10の構造に対して水分子をもう一つ加えて以下の構造を作り、再度配置探索計算を行います(図1 1)。この時キーワードを

> HLSEARCH OPT=GROUP MOL_GROUP=(25,1) MOL_GROUP=(28,1) HLSEARCH_HOST_NDIV=3 HLSEARCH_LIGAND_ROT=(12,12,12) HLSEARCH_LIGAND_MOL=3

としました。ここで「HLSEARCH_LIGAND_MOL=3」は3番目の分子(新たに加えた水分子)をリガンド として配置することを意味します。また「MOL_GROUP=(25,1)」および「MOL_GROUP=(28,1)」とした ことで、2つの水分子の位置および構造について構造最適化を行っています。上記の設定で得られた最安定 構造を図13に示します。

図11:グルコース+水2分子の入力構造

図12:グルコース+水2分子の最安定配置構造(MMFF94s)

※付録1.図5(酢酸2分子)の入力構造データ

acetic_acid_dimer.m	nol														
16 14 0 0 0 0	0	0 0 0	0		0										
0.9628 -0.55	L1	0.0000	С	0	0	0	0	0	0	0	0	0	0	0	0
2.1931 -0.55	L1	0.0000	0	0	0	0	0	0	0	0	0	0	0	0	0
0.3335 0.65	L1	0.0000	0	0	0	0	0	0	0	0	0	0	0	0	0
0.9803 1.37	55	-0.0000	Н	0	0	0	0	0	0	0	0	0	0	0	0
-0.0286 -1.72	96	0.0001	С	0	0	0	0	0	0	0	0	0	0	0	0
-0.6441 -1.67	78	0.8738	Η	0	0	0	0	0	0	0	0	0	0	0	0
-0.6442 -1.67	78	-0.8735	Н	0	0	0	0	0	0	0	0	0	0	0	0
0.5138 -2.65	L 9	0.0000	Н	0	0	0	0	0	0	0	0	0	0	0	0
3.5500 2.43	93	0.3355	С	0	0	0	0	0	0	0	0	0	0	0	0
2.4107 2.29	78	-0.1068	0	0	0	0	0	0	0	0	0	0	0	0	0
4.2100 1.32	56	0.7422	0	0	0	0	0	0	0	0	0	0	0	0	0
3.6576 0.53	65	0.6183	Н	0	0	0	0	0	0	0	0	0	0	0	0
4.3924 3.71	59	0.5151	С	0	0	0	0	0	0	0	0	0	0	0	0
4.6407 3.83	59	1.5488	Н	0	0	0	0	0	0	0	0	0	0	0	0
5.2907 3.63	14	-0.0604	Н	0	0	0	0	0	0	0	0	0	0	0	0
3.8309 4.56	36	0.1817	Н	0	0	0	0	0	0	0	0	0	0	0	0
1 2 2 0 0 0	0														
1 3 1 0 0 0	0														
1 5 1 0 0 0	0														
3 4 1 0 0 0	0														
561000	0														
5 7 1 0 0 0	0														
5 8 1 0 0 0	0														
9 10 2 0 0 0	0														
9 11 1 0 0 0	0														
9 13 1 0 0 0	0														
11 12 1 0 0 0	0														
13 14 1 0 0 0	0														
13 15 1 0 0 0	0														
13 16 1 0 0 0	0														
M END															

aDglucose_H20	O.mol			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{arred} 0 \\ 2.4148 \\ -1.0932 \\ -1.5744 \\ 1.2411 \\ 0.1125 \\ 1.8092 \\ -1.9764 \\ -0.9820 \\ 0.5024 \\ -0.5233 \\ 0.7799 \\ -0.5881 \\ 2.9953 \\ -2.4621 \\ 1.5201 \\ -0.1177 \\ 1.3889 \\ -2.7768 \\ -1.4193 \\ 0.7196 \\ 1.3731 \\ -0.3262 \\ 0.6668 \\ -1.3725 \\ 0.8234 \\ 0.0085 \\ 0.7822 \\ 0.6668 \\ -1.3725 \\ 0.8234 \\ 0.0085 \\ 0.7822 \\ 0.0085 \\ 0.7822 \\ 0.000 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	999 0.6016 0 -0.5731 0 -0.2774 C -0.1553 C 0.1452 C -0.2200 0 1.0847 0 -0.1321 0 -0.2701 C -0.5592 C 0.1723 C -0.0183 0 0.4978 H -0.8896 H -1.2154 H 1.2154 H 1.2184 H -0.1951 H -1.3421 H 0.2851 H -1.3421 H 0.2851 H -1.6358 H 1.2558 H -0.4004 H -2.7522 0 -2.2451 H -3.4490 H	V2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

aDglucose_2H2	20.mol	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{arred} 0 & 2.0810 & 0.1820 & -1.1464 & 1.1508 & 1.1585 & -0.2633 & -1.25280 & -1.2797 & -0.2507 & 2.4922 & 1.8632 & -1.8120 & 1.4462 & 0.9385 & -1.2089 & -1.7501 & -2.8164 & 2.7883 & 3.3193 & -1.1301 & -0.5013 & 1.6280 & -1.8804 & -1.1431 & -2.5619 & 0.9616 & 0.6108 & 1.0508 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	999 V2000 -0.8582 0 0 0 0 0 0.7911 0 0 0 0 0 0.0453 C 0 0 0 0 -0.0836 C 0 0 0 0 -0.7345 0 0 0 0 0 -0.7345 0 0 0 0 0 0.2513 0 0 0 0 0 0.2908 C 0 0 0 0 -0.7345 0 0 0 0 0 0.2908 C 0 0 0 0 -0.6492 H 0 0 0 0 -1.142 H 0 0 0 0 -0.6492 H 0 0 0 0 -1.3080 H 0 0 0 0 -1.3080 H 0 0 0 0 -0.5097 O 0 0 0 0 -0.8632 H 0 0 0 0 -0.8632 H 0 0 0 <

13. 動的反応座標(Dynamic Reaction Coordinate, DRC)法による動力学計算

配座同士の変換や、分子間相互作用で配位している分子の移動は、ポテンシャルエネルギー曲面上において低周波数の固有振動モードに沿って構造が変化することで起こると考えられます(図1)。ここでは、基準振動解析により求めた振動数と振動モードを利用して動力学計算を行う、動的反応座標(DRC)法の概要と計算例を示します。

13.1 DRC法の概要

熱平衡状態において、エネルギーが各基準振動モードに等分配されるとしますと、i番目の基準振動モードの振幅(振動による平衡構造からのずれ)は

$$\alpha_i = \frac{\sqrt{2RT}}{2\pi c\omega_i} \tag{1}$$

で表されます。ここで R は気体定数、T は絶対温度、c は光速、ωi は i 番目の基準振動数です。時間 t での 熱揺らぎによる平衡構造からのずれは、以下の式で求めることができます。

$$\Delta \mathbf{x}(t) = \sum_{i} \{ \alpha_{i} \cdot \mathbf{q}_{i} \cdot \cos(2\pi c \omega_{i} t + \delta_{i}) \}$$
⁽²⁾

ここで **q**_iは基準振動モード、δ_iは振動モード **q**_iの位相差で、デフォルトでは-90°にしています。 この式(2)を使って、まず平衡構造からの変位ベクトルと初速を求めるのですが、この時式(1)の振幅は振 動数の総和と運動エネルギーを元に求めた式(3)の値でスケーリングします。

Factor =
$$\sqrt{\frac{\sum_{i} \omega_{i}}{\frac{1}{2} \sum_{i} \sum_{j}^{N} m_{j} v_{ij}^{2}}}$$
(3)

ここで m_j は原子jの質量、 $v_{i,j}$ はi番目の振動モードでの原子jの速度を表します。式(3)のスケーリングファクターは、振動数の和の代わりに別の値を指定(DRC_KICK=)することも、またファクターそのものを指定(DRC SCALE=)することもできます。

平衡構造から動いた後は、その構造でのグラジエント値から変位と速度を求めることで、トラジェクトリーと各点でのエネルギー値を求めます。

13.2 DRC 計算例: *α*-D-Glucose + H₂O

図2に示した、α-D-Glucoseに水分子が一つ配位した系に、DRC計算を適用します。図2の赤い矢印は最低振動モード(振動数=30.09 cm⁻¹)を表していて、このモードを使って計算を行います。

図2: α-D-Glucose + H₂Oの極小構造(E=74.7739 kcal/mol)と 最低振動モード(振動数=30.09 cm⁻¹)

計算には以下の aDglucose_H2O.ini ファイルと aDglucose_H2O.mol ファイルを用いています。ここで、 「SNAPSHOT=」は何ステップ毎に構造を出力させるかの指定、「DRC_SMODE=」はDRC計算に用いる振動 モードが一つの場合の番号の指定、「DRC_NSTEP=」は時間刻み幅(単位は ps)、「DRC_KICK=」は振幅 のスケーリングファクターを計算する際の振動エネルギーの指定(単位は kcal/mol)をそれぞれ表していま す。

aDglucose H2O.ini :

aDglucose_H2O.mol:

計算を実行しますと、時間経過に伴うエネルギー値がの変化が aDglucose_H2O.bso に、また 10 step 毎の構造の変化が aDglucose_H2O-D.sdf にそれぞれ出力されます。構造とエネルギー値の変化を図3に示します。2 ps で、初期構造より安定な配位構造が得られていることがわかります。

1000 step, 0.2 ps, E=76.2766 kcal/mol

2000 step, 0.4 ps, E=77.6433 kcal/mol

5000 step, 1 ps, E=76.2563 kcal/mol

10000 step, 2 ps, E=74.7030 kcal/mol

図3: α -D-Glucose + H₂Oの DRC 計算によるトラジェクトリーとエネルギー変化

aDglucose_H2O.bso :

							!				
<u>.</u>											
! DYNAMIC REACTION COORDINATES(Simple Molecular Dynamics): DRC !											
!							!				
!							!				
!							!				
! SNAPSHOT E	PRINTING FO	OR EACH N-TH STEP:	10				!				
! SCALING	G FACTOR FO	OR ALL VIBRATIONS:	2.3331				!				
! TEMPERATU	JRE OF VIB	RATIONAL DYNAMICS:	25.00 [DEGREE	CELSIUS]			1				
! STARTING	TIME OF D	YNAMIC SIMULATION:	0.0000 [PS]				1				
! TERMINAL	TIME OF D	YNAMIC SIMULATION:	4.4345 [PS]				!				
! INTERVAL	TIME OF D	YNAMIC SIMULATION:	0.0002 [PS]				!				
! SINGLE	VIBRATIO	NAL MODE SELECTED:					!				
1		NO. WAVE NU	JMBER PHASE	PERIOD	VIB ENERGY	KINECTIC	1				
-		[CM**=]	L] [DEGREE]	[PS]	[KCAL/MOL]	[KCAL/MOL]					
1		1 30.0	0.0000	1.1086	8.602/1E-02	0.59249					
:	DDG DUAGE	TNITETAT TRAETON DAT	TED BUEN ALL DUACE				:				
*WARNING:	DRC PHASE	- INITIALIZATION FAI	LLED, THEN ALL PHASE	IS ARE SET TO ZERO							
							:				
:											
ENERGY PROFI	LE:										
ENERGY PROFI	LE:										
ENERGY PROFI	LE: TIME	ENERGY	DELTA E	GRMS	XRMS	VMAX	ATOM	KINETIC			
ENERGY PROFI NSTEP	ILE: TIME [PS]	ENERGY [KCAL/MOL]	DELTA E [KCAL/MOL]	GRMS [KCAL/MOL/ANGS]	XRMS [ANGS]	VMAX [ANGS]	ATOM	KINETIC [KCAL/MOL]			
ENERGY PROFI NSTEP 0	TLE: TIME [PS] 0.0000	ENERGY [KCAL/MOL] 74.773940376484	DELTA E [KCAL/MOL] 0.000000	GRMS [KCAL/MOL/ANGS] 2.3867523E-07	XRMS [ANGS]	VMAX [ANGS]	ATOM	KINETIC [KCAL/MOL]			
ENERGY PROFI NSTEP 0 1	TIME [PS] 0.0000 0.0002	ENERGY [KCAL/MOL] 74.773944532555	DELTA E [KCRL/MOL] 0.000000 4.1560707E-06	GRMS [KCAL/MOL/ANGS] 2.3867523E-07 4.0415211E-04	XRMS [ANGS] 4.3583597E-04	VMAX [ANGS] 2.0982732E-03	Atom	KINETIC [KCAL/MOL] 3.225000			
ENERGY PROFI NSTEP 0 1 2	TIME [PS] 0.0000 0.0002 0.0004	ENERGY [KCAL/MOL] 74.773940376484 74.773944532555 74.773957055683	DELTA E [KCAL/MOL] 0.000000 4.1560707E-06 1.6680199E-05	GRMS [KCAL/MOL/ANGS] 2.3867523E-07 4.0415211E-04 1.0908321E-03	XRMS [ANGS] 4.3583597E-04 2.4900281E-09	VMAX [ANGS] 2.0982732E-03 2.1675433E-08	ATOM 26	KINETIC [KCAL/MOL] 3.225000 3.224996			
ENERGY PROFI NSTEP 0 1 2 3	TIME [PS] 0.0000 0.0002 0.0004 0.0006	ENERGY [KCAL/MO] 74.773940376484 74.773944532555 74.773957056683 74.773978046833	DELTA E [KCAL/MOL] 0.000000 4.1560707E-06 1.6680199E-05 3.7670348E-05	GRMS [KCAL/MOL/ANGS] 2.3867523E-07 4.0415211E-04 1.0908321E-03 2.1432910E-03	XRMS [ANGS] 4.3583597E-04 2.4900281E-09 9.7642410E-09	VMAX [ANGS] 2.0982732E-03 2.1675433E-08 6.5034564E-08	ATOM 26 26	KINETIC [KCAL/MOL] 3.225000 3.224996 3.224983			
ENERGY PROFI NSTEP 0 1 2 3 4	TIME [PS] 0.0000 0.0002 0.0004 0.0006 0.0008	ENERGY [KCAL/MOL] 74,773940376484 74,773944532555 74,773957056683 74,773978046833 74,77407617315	DELTA E [KCAL/MOL] 0.000000 4.1560707E-06 1.6680199E-05 3.7670348E-05 6.7240831E-05	GRMS [KCAL/MOL/ANGS] 2.3867523E-07 4.041521E-04 1.0908321E-03 2.1432910E-03 3.5546838E-03	XRMS [ANGS] 4.3583597E-04 2.4900281E-09 9.7642410E-09 2.1744980E-08	VMAX [ANGS] 2.0982732E-03 2.1675433E-08 6.5034564E-08 1.0713808E-07	ATOM 26 26 26	KINETIC [KCAL/MOL] 3.225000 3.224996 3.224962			
ENERGY PROFI NSTEP 0 1 2 3 4 5	TIME [PS] 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010	ENERGY [KCAL/MOL] 74.773940376484 74.773944532555 74.773957056683 74.77395046833 74.774007617315 74.774007617315	DELTA E [KCAL/MOL] 0.000000 4.1560707E-06 1.6680199E-05 3.767034BE-05 6.7240831E-05 1.0551811E-04	GRMS [KCAL/MOL/ANGS] 2.3867523E-07 4.0415211E-04 1.0908321E-03 2.1432910E-03 3.5646838E-03 5.3342903E-03	XRMS [ANGS] 4.3583597E-04 2.4900281E-09 9.7642410E-09 2.1744980E-08 3.8198805E-08	VMAX [ANGS] 2.0982732E-03 2.1675433E-08 6.5034564E-08 1.0713808E-07 1.4714705E-07	26 26 26 26 26	KINETIC [KCAL/MOL] 3.225000 3.224996 3.224983 3.224962 3.224933			
ENERGY PROFI NSTEP 0 1 2 3 4 5 6	TIME [PS] 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012	ENERGY [KCAL/MOL] 74.773940376484 74.7739404532555 74.77397056683 74.773978046833 74.77407617315 74.774045894596 74.774045894596	DELTA E [KCAL/MOL] 0.000000 4.1560707E-06 1.6680199E-05 3.7670348E-05 6.7240831E-05 1.0551811E-04 1.5263542E-04	GRMS [KCAL/MOL/ANGS] 2.3867523E-07 4.041521E-04 1.0908321E-03 3.564633EE-03 5.364293E-03 5.342903E-03 7.4205784E-03	XRMS [ANGS] 4.3583597E-04 2.4900281E-09 9.7642410E-09 2.174496E-08 3.8198805E-08 3.8198805E-08 5.8804864E-08	VMAX [ANGS] 2.0982732E-03 2.1675433E-08 6.0034564E-08 1.0713808E-07 1.4714705E-07 1.4714705E-07	ATOM 26 26 26 26 26 26	KINETIC [KCAL/MOL] 3.225000 3.224996 3.224962 3.224962 3.224943 3.224933			
ENERGY PROFI NSTEP 0 1 2 3 4 5 6 7	TIME [PS] 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014	ENERGY [KCAL/MOL] 74.773940376484 74.77395405663 74.77395005663 74.77395004583 74.774007617315 74.774093915900 74.77419301900	DELTA E [KCAL/MOL] 0.000000 4.1560707E-06 1.6680199E-05 6.7240831E-05 1.0551811E-04 1.5263542E-04 2.0872658E-04	GRMS [KCAL/MOL/ANGS] 2.3867523E-07 4.0415211E-04 1.0908321E-03 2.1422910E-03 5.564638E-03 5.3342903E-03 7.4205784E-03 9.7846983E-03	XRMS [ANGS] 4.3583597E-04 2.4900281E-09 9.7642410E-09 2.174490E-08 3.8196805E-08 5.8804864E-08 5.8804864E-08 8.3161457E-08	VMAX [ANGS] 2.0982732E-03 2.1675433E-08 6.5034564E-08 1.0713808E-07 1.4714705E-07 1.8427995E-07 2.1781209E-07	26 26 26 26 26 26 26 26	KINETIC [KCAL/WOL] 3.225000 3.224996 3.224996 3.224962 3.224933 3.224933 3.224894			
ENERGY PROFI NSTEP 0 1 2 3 4 5 6 7 8	TIME [PS] 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016	ENERGY [KCAL/MOL] 74.773940376484 74.773940376484 74.773957056683 74.7739570646833 74.77409617315 74.774045894596 74.7740493011900 74.774149103069	DELTA E [KCAL/MOL] 0.000000 4.1560707E-06 1.6680199E-05 3.7670348E-05 1.0551811E-04 1.5263342E-04 2.0872658E-04 2.7391969E-04	GRMS [KCAL/MOL/ANGS] 2.3867523E-07 4.0415211E-04 1.0908321E-03 2.1432910E-03 5.342803E-03 5.342203E-03 7.4205784E-03 9.7846983E-03 1.2382049E-02	XRMS [ANGS] 4.3583597E-04 2.4900281E-09 9.7642410E-09 2.1744980E-08 3.8196805E-08 5.8804864E-08 8.3161457E-08 8.3161457E-08	VMAX [ANGS] 2.0982732E-03 2.1675433E-08 6.5034564E-08 1.0713808E-07 1.4714705E-07 1.8427995E-07 2.1781209E-07 2.4708957E-07	26 26 26 26 26 26 26 26 26	KINETIC [KCAL/MOL] 3.225000 3.224996 3.224983 3.224983 3.224962 3.224933 3.224894 3.224894 3.2248791			
ENERGY PROFI NSTEP 0 1 2 3 4 5 6 7 8 9	TIME [PS] 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018	ENERGY [KCAL/MOL] 74,773940376484 74,773946352555 74,773950056683 74,7740545894596 74,774045894596 74,774045894596 74,774149103069 74,774214296176	DELTA E [KCAL/MOL] 0.000000 1.6680199E-05 3.7670348E-05 6.7240831E-05 1.0551811E-04 1.5263542E-04 2.0872658E-04 2.7391969E-04 3.4833094E-04	GRMS [KCAL/MOL/ANGS] 2.3867523E-07 4.0415211E-04 1.0908321E-03 2.1432910E-03 5.564638E-03 5.342903E-03 7.4205784E-03 9.7846983E-03 1.2382049E-02 1.5163428E-02	XRMS [ANGS] 4.3583597E-04 2.4900281E-09 9.7642410E-09 9.1744980E-08 3.8104805E-08 8.3161457E-08 1.1079334E-07 1.4116405E-07	VMAX [ANGS] 2.0982732E-03 2.1675433E-08 6.5034564E-08 1.0713808E-07 1.4714705E-07 2.1781209E-07 2.1781209E-07 2.4708957E-07 2.7154203E-07	ATOM 26 26 26 26 26 26 26 26 26	KINETIC [KCAL/MOL] 3.224996 3.224996 3.224962 3.224962 3.224962 3.224894 3.224894 3.224894 3.224894 3.224894 3.224726			

14. 量子化学計算プログラム Gaussian を用いた構造最適化および配座探索の 実行

CONFLEX で行う構造最適化および配座探索は、通常 CONFLEX 本体に搭載されている古典的な分子力場 を用いて実行しています。エネルギー極小構造を高速かつ効率的に網羅する上で分子力場は有用ですが、対 象とする系に必要な原子タイプやパラメーターが無い場合は、これらを補わなければ極小構造を求めること ができません。また、力場では記述するのが難しい電子状態での極小構造を求めたい場合、力場を使って算 出した配座について量子化学計算を行った場合と、最初から量子化学計算を行って配座探索を実行した場合 とで、得られる配座が異なることも考えられます。

CONFLEX8 以降では、分子力場を用いる代わりに量子化学計算プログラム Gaussian を外部プログラムと して呼び出し、最適化計算や配座探索を実行することができます。ここでは、Gaussian を呼び出して配座探 索計算を行う場合の設定方法と、その結果の例を示します。

14.1 環境設定

外部プログラムとして Gaussian (16 または 09) を呼び出すためには、CONFLEX がインストールされて いるマシンに Gaussian もインストールされている必要があります。また Gaussian を実行する際には、お使 いのアカウントで Gaussian 実行用の環境設定があらかじめ為されているか、あるいは環境設定を含めた設定 ファイルを別途用意する必要があります。

○Mac, Linux の場合

環境変数"gl6root"または"g09root"をあらかじめ設定するか、あるいは外部ファイルに設定を記述する必要 があります。尚、環境変数「GAUSS_SCRDIR」を指定していない場合は、中間ファイルがカレント・ディ レクトリに出力されます。

○Windows の場合

環境変数「GAUSS_EXEDIR」に、Gaussian がインストールされているフォルダー名(C:¥G16W、等)を 設定するか、または設定コマンド(例: set GAUSS_EXEDIR=C:¥G16W)が記載されたファイルを用意する 必要があります。尚、キーワード「EXT_GAU_SCRDIR=」に中間ファイルを出力するフォルダーを指定し ない場合は、「%GAUSS_EXEDIR%¥Scratch」が出力ファイルおよび中間ファイルを出力するフォルダーと して設定されます。

14.2 ini ファイルの設定

ここでは、Gaussian 実行用の入力ファイルを作成するための ini ファイルの設定を示します。以下のよう な入力ファイルを作成する場合、

%mem=32MW
%nprocshared=2
#HF/3-21G opt
test of HF/3-21G calculation
 0 1
molecular specification
...

分子構造データより上の設定は、以下の ini ファイルで作成することができます:

.iniファイル:

EXTERNAL_PROGRAM=GAUSSIAN EXT_GAU_LINK0=(mem=32MW) EXT_GAU_LINK0=(nprocshared=2) EXT_GAU_ROUTE=("HF/3-21G Opt") EXT_GAU_COMMENT=("test of HF/3-21G calculation") EXT_GAU_CHARGE=0 EXT_GAU_SPIN=1

ここで「EXTERNAL_PROGRAM=」は使用する外部プログラム名、「EXT_GAU_LINK0=」は Link0 コマン ド(複数指定可)、「EXT_GAU_ROUTE=」はルートセクション、「EXT_GAU_COMMENT=」はコメン ト、「EXT_GAU_CHARGE=」は系全体の電荷、「EXT_GAU_SPIN=」は系のスピン多重度をそれぞれ表し ています。尚、「EXT_GAU_ROUTE=」と「EXT_GAU_COMMENT=」では他と異なり「("」と「")」で指 定しますので、ご注意ください。

この設定は、別途ファイルに記述(gausssian.hdr)してそのファイルを同じフォルダー内に置き、 「EXT_GAU_HEADER_FILE=gaussian.hdr」をiniファイルに記述することで、設定内容をファイルから読み 込むようにすることもできます。

.iniファイル:

EXTERNAL_PROGRAM=GAUSSIAN EXT_GAU_HEADER_FILE=(gaussian.hdr)

gaussian.hdr ファイル:

%mem=32MW %nprocshared=2 #HF/3-21G opt

test of HF/3-21G calculation

0 1

また、キーワード「Gen」を指定して基底関数を設定する時のように分子構造データの後に設定を記述する 場合も、別ファイルに記述して読み込ませることが可能です。以下のような入力ファイルで計算する場合、

%mem=20MW
%nprocshared=2
B3LYP/gen Opt
TEST OF B3LYP/6-31G(d) CALCULATION
0 1
molecular specification
...
H C O 0
6-31G(d)

分子構造データ前後のデータを別ファイルにそれぞれまとめて、

gaussian.hdr ファイル:

%mem=20MW %nprocshared=2 # B3LYP/gen Opt

TEST OF B3LYP/6-31G(d) CALCULATION

0 1

gaussian.ftr ファイル:

H C O 0 6-31G(d) ****

iniファイルに「EXT_GAU_FOOTER_FILE=gaussian.ftr」を加えて読み込ませるようにします。

.iniファイル:

EXTERNAL_PROGRAM=GAUSSIAN EXT_GAU_HEADER_FILE=(gaussian.hdr) EXT_GAU_FOOTER_FILE=(gaussian.ftr)

14.3 ファイルを用いた Gaussian 実行

サーバー上でジョブスケジューラーを用いてGaussianを実行する場合や、環境設定を計算実行時のみ有効 にしたい場合、スクリプトファイルを作成しそれを実行するコマンドを指定します。

○Mac, Linuxの場合

シェルスクリプトで実行する場合の例を示します:

.iniファイル:

EXTERNAL_PROGRAM=GAUSSIAN EXT_JOB_COM=("sh") EXT_JOB_FILE=setup.sh

ここで「EXT_JOB_COM=」は実行コマンド、「EXT_JOB_FILE=」は設定ファイル名をそれぞれ表します。 設定ファイルsetup.shの内容を以下のようにすると、

setup.shファイル:

export g16root=/usr/local export GAUSS_SCRDIR=/tmp CONFLEXからGaussianを呼び出す毎に、このファイルの内容とGaussian実行コマンドを含むスクリプトファ イルを作成し、shコマンドで計算を実行します。

ジョブスケジューラー(ここではUniva Grid Engine)を使用する場合は、

.iniファイル:

EXTERNAL_PROGRAM=GAUSSIAN EXT_JOB_COM=("qsub -sync yes") EXT_JOB_FILE=qsub.sh ...

としてジョブスケジューラーの実行コマンド(qsub-sync yes)と設定ファイル名を記述し、以下のような内容をqsub.shファイルに記述することでジョブスケジューラーを使用してGaussianを実行させることが可能になります。

qsub.shファイル:

#!/bin/bash
#\$ -\$ /bin/bash
-N a16 from conflex
#\$ owd
#\$ -J Y
#\$ -q all.q
#\$ -pe sme 2
export g16root=/usr/local

尚、ジョブスケジューラーを用いる場合は必ずインタラクティブに実行するオプション(Univa Grid Engine では「-sync yes」)を加えてください。

○Windows の場合

Windows 環境では、実行コマンドを指定しない場合は.bat ファイルを作りそれを実行します。

.iniファイル:

EXTERNAL_PROGRAM=GAUSSIAN EXT_JOB_FILE=setup.txt EXT_GAU_SCRDIR=D:¥Scratch ...

setup.txt ファイル:

set GAUSS_EXEDIR=C:¥G16W

この.iniファイルでは、「EXT_GAU_SCRDIR=」で中間ファイルの保存先を D:¥Scratch 以下に指定しています。保存先を指定しない場合は、「%GAUSS_EXEDIR%¥Scratch」ファルダーに保存されます。

14.4 Propylene glycolの B3LYP/6-31G(d)レベルによる配座探索計算

ここでは計算例として、Propylene glycol(図1)について B3LYP/6-31G(d)レベルで配座探索を行った 結果を示します。MMFF94s でこの分子の配座探索を行う(SEL=7)と21個の配座異性体が得られ、こ れらを同じ B3LYP/6-31G(d)レベルで再度最適化すると、MMFF94s で5番目に安定な配座が最も安定に なります(図2)。

図1: Propylene glycol の入力構造

図2: Propylene glycolの B3LYP/6-31G(d)レベルでの最安定構造

図3: MMFF94sで10番目に安定な構造(左)をB3LYP/6-31G(d)で再度 最適化すると、異なる配座異性体(右)として収束する

また、MMFF94s で 10 番目に安定な構造を B3LYP/6-31G(d)で最適化すると他の構造と同一になる(図 3) ため、最終的に B3LYP/6-31G(d)で得られた配座は 20 個でした。

配座探索計算には、以下に示す入力ファイル(PropyleneGlycol.mol, PropyleneGlycol.ini)を用います。 ここで、「EXT_PREOPT=OFF」は Gaussian を呼び出す前に分子力場による最適化を行わないようにす る指定、「EDIF_HARD=1.0D-3」は新たに得られた配座を保存するかどうかを判定する際のエネルギ 一差の閾値を 0.001 kcal/mol とする指定です。

PropyleneGlycol.mol

Prop	oyle	neG	lyc	col.	mol																		
13	12	0	0	0	0	0	0	0 ()	0		0											
-	-4.0	461		-0.	345	9	0	.0000) C		0	0	0	0	0	0	0	0	0	0	0	0	
-	-3.6	894		0.	158	5	0	.8737	7 H		0	0	0	0	0	0	0	0	0	0	0	0	
-	-3.6	894		Ο.	158	5	-0	.8737	7 H		0	0	0	0	0	0	0	0	0	0	0	0	
-	-5.1	161		-0.	345	9	0	.0000) H		0	0	0	0	0	0	0	0	0	0	0	0	
-	-3.5	328		-1.	797	8	0	.0000) C		0	0	0	0	0	0	0	0	0	0	0	0	
-	-3.8	895		-2.	302	2	0	.8737	7 Н		0	0	0	0	0	0	0	0	0	0	0	0	
-	-1.9	928		-1.	797	9	-0	.0000) C		0	0	0	0	0	0	0	0	0	0	0	0	
-	-1.6	361		-1.	293	5	-0	.8737	7 Н		0	0	0	0	0	0	0	0	0	0	0	0	
_	-1.6	361		-1.	293	4	0	.8736	5 н		0	0	0	0	0	0	0	0	0	0	0	0	
-	-4.0	095		-2.	471	9	-1	.1676	5 0		0	0	0	0	0	0	0	0	0	0	0	0	
-	-4.5	428		-3.	226	4	-0	. 9068	З Н		0	0	0	0	0	0	0	0	0	0	0	0	
_	-1 5	162		-3	146	1	0	0000	$) \cap$		0	0	0	0	0	0	0	0	0	0	0	0	
_	-0 5	757		-3	153	5	0	192	, с 7 н		0	0	0	0	0	0	0	0	0	0	0	0	
1	2	1	\cap	0	100	0	0	• 1 7 2 1	11		0	0	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	0	0	0																	
1	1	1	0	0	0	0																	
⊥ 1	т 5	1	0	0	0	0																	
	6	⊥ 1	0	0	0	0																	
5	7	⊥ 1	0	0	0	0																	
5	10	⊥ 1	0	0	0	0																	
7	0 T U	⊥ 1	0	0	0	0																	
7	0	1	0	0	0	0																	
/ 7	9 1 0	⊥ 1	0	0	0	0																	
10	⊥∠ 1 1	1	0	0	0	0																	
1 U	⊥⊥ 1 ⊃	1	0	U	0	0																	
12	13	T	U	0	U	U																	
M	UN D																						

PropyleneGlycol.ini

CONFLEX
SEL=5
EXTERNAL_PROGRAM=GAUSSIAN
EXT_GAU_LINK0=(mem=128MW)
EXT_GAU_LINK0=(nprocshared=2)
EXT_GAU_ROUTE=("B3LYP/6-31G(d) opt")
EXT_GAU_COMMENT=("Propylene Glycol B3LYP/6-31G(d) optimization")
EXT_GAU_CHARGE=0
EXT_GAU_SPIN=1
EXT_PREOPT=OFF
EDIF_HARD=1.0D-3

計算結果として、PropyleneGlycol.ls1の出力内容と Gaussian の入出力ファイルを示します。Gaussian の入出力ファイル名は ls1 ファイルの「CONF. ID」に対応しており、最安定構造は

PropyleneGlycol_00006.log および PropyleyeGlycol_00006.fchk に出力されています。また ls1 ファイルの「ORIGINAL STERIC E」は、Gaussian の計算で得られた全エネルギーを kcal/mol に変換したもの(最 安定構造の全エネルギーは-269.56133526 a.u.なので、-269.56133526×627.5095=-169152.2987)です。尚 この計算では、Gaussian 16 Rev. A.03 を使用しています。

この計算で得られた配座と、先に分子力場で探索してから Gaussian で再度最適化した結果を比較し ますと、図4に示す4つの構造が、先に分子力場で計算した配座異性体には含まれていないことがわか りました。

PropyleneGlycol.ls1 :

NO.	CONF. ID	ORIGINAL STERIC E	DELTA E	DISTRI- BUTION	INIT.	REOPT.	NO NE(
1	00000005	-169152.2987	0.0000	20.8296	 Т*	 F+	0
2	00000010	-169152.2709	0.0278	19.8754	Т*	F+	0
3	0000009	-169152.1497	0.1490	16.1982	Т*	F+	0
4	0000013	-169151.9408	0.3579	11.3851	Т*	F+	0
5	00000001	-169151.9312	0.3675	11.2019	Т*	F+	0
6	00000007	-169151.6797	0.6190	7.3280	Т*	F+	0
7	00000011	-169151.4408	0.8579	4.8960	Т*	F+	0
8	00000002	-169151.1376	1.1611	2.9347	Т*	F+	0
9	00000021	-169150.9622	1.3365	2.1829	Т*	F+	0
10	0000006	-169150.9608	1.3379	2.1778	Т*	F+	С
11	00000012	-169149.5319	2.7668	0.1952	Т*	F+	С
12	00000014	-169149.3686	2.9301	0.1482	Т*	F+	С
13	0000008	-169149.2519	3.0468	0.1217	Т*	F+	С
14	00000018	-169149.2130	3.0857	0.1140	Т*	F+	C
15	00000017	-169149.0687	3.2300	0.0893	Т*	F+	C
16	00000019	-169149.0383	3.2604	0.0849	Т*	F+	C
17	00000020	-169149.0232	3.2755	0.0827	Т*	F+	C
18	00000015	-169148.9886	3.3101	0.0780	Т*	F+	C
19	0000003	-169148.8936	3.4051	0.0665	Т*	F+	C
20	00000004	-169147.3564	4.9423	0.0050	Т*	F+	C
21	00000016	-169147.3371	4.9616	0.0048	Τ*	F+	C

Gaussian 入出力ファイルの一覧:

PropyleneGlycol_00001.fchk	PropyleneGlycol_00008.fchk	PropyleneGlycol_00015.fchk
PropyleneGlycol_00001.gjf	PropyleneGlycol_00008.gjf	PropyleneGlycol_00015.gjf
PropyleneGlycol_00001.log	PropyleneGlycol_00008.log	PropyleneGlycol_00015.log
PropyleneGlycol_00002.fchk	PropyleneGlycol_00009.fchk	PropyleneGlycol_00016.fchk
PropyleneGlycol_00002.gjf	PropyleneGlycol_00009.gjf	PropyleneGlycol_00016.gjf
PropyleneGlycol_00002.log	PropyleneGlycol_00009.log	PropyleneGlycol_00016.log
PropyleneGlycol_00003.fchk	PropyleneGlycol_00010.fchk	PropyleneGlycol_00017.fchk

No.19 (CONF ID=10)

No.20 (CONF ID=14)

No.23 (CONF ID=5)

No.24 (CONF ID=2)

図4: B3LYP/6-31G(d)による配座探索で新たに得られた構造