

AMBER入門

コンフレックス株式会社

1

はじめに

・AMBERとは

Assisted Model Building and Energy Refinement

- 注)論文等で、以下の2つの意味で「AMBER」という単語 が用いられている
 - 1. 分子動力学計算プログラム・パッケージ
 - 2. 力場パラメーター・セット

情報源

・Webページ

https://ambermd.org/

https://www.conflex.co.jp/prod_amber.html

・マニュアル

https://ambermd.org/Manuals.php

・チュートリアル

https://ambermd.org/tutorials/

本日の講習会は、このチュートリアルを元にし、いくつか項目を加えた上で行いま す。

Amber Jupyter紹介

- ·Webベースのノートブック(ブラウザー上で動作)
- ・ほぼ全てのAMBERコマンドを実行可能
- 通常のシステム・コマンドも実行可能
- ・分子やグラフの表示
- ・ 作業の流れをドキュメント化できる (再利用)

サーバー設定

- ・サーバー設定:.bash_profileに追加済み
- PythonとAmberの環境を設定

source /home1/share/anaconda3/3.7/etc/profile.d/conda.sh

conda activate base

source /home1/share/AmberTools/amber22/amber.sh

Jupyterの起動

Amberの環境設定が必要

例)

source \$HOME/Amber/amber22/amber.sh

・下記コマンドを入力するとJupyterが起動

amber.jupyter notebook

・ブラウザーにJupyterトップページが開く

·Windowsの場合、WSLで起動して別途ブラウザーを起動

amber.jupyter notebook --no-browser

入門編

リモートサーバーとの接続

・ローカルのマシンからsshポートフォワーディング

ssh -L localhost:8000:localhost:8000 ユーザー名@ff

・サーバー側でJupyter notebookを起動

jupyter notebook --no-browser --port=8000

・ブラウザーを起動し、localhost:8000に接続

パスワード:conflex

・ユーザー1:

ssh -L localhost:8001:localhost:8001 ulef1016@ff

jupyter notebook --no-browser --port=8001

・ユーザー2:

ssh -L localhost:8002:localhost:8002 ulef1017@ff

jupyter notebook --no-browser --port=8002

	localhost	
🗰 WebMail HackerWeb ZiBi-T 移動傾向 重ねるハザードマップ	プ Daily マック情報 マ Develop マ Qt	✓ Qiita ✓ RTTG
🎆 notebook	🔵 Home Page -	Select or create a notebook
💭 Jupyter		終了ログアウト
ファイル 実行中 クラスタ		
アクションを実行する為のアイテムを選択して下さい。		アップロード 新規 ▼ 2 Notebook:
0 - 1	名前↓	_{最新} Python 3 (ipykernel) ズ
ノート	、ブック一覧は空です。	Other:
		テキストファイル
		フェルガ

HIGH PERFORMANCE Conformation A

Python3が利用できる

C Jupyter Untitled (未保存の変更)	ログアウト
	信頼済み 🖋 Python 3 (ipykernel) O
ファイル 編集 表示 挿入 セル カーネル Widgets	ヘルプ
□ + ※ ④ Ⅰ ▲ ↓ ▶ 実行 ■ C ▶ □-ド	
入力 []:	

ファイル	編集	表示	挿入	セル	カーネル	Widgets	ヘルプ
•		₫ 🔺	↓ ►	実行 ■	C # ~	ノコード Markdown	
						Raw NBConvert	
入力	[]:					-	

Markdown形式のテキストを入力できる

<center> AMBER Tutorial </center>
<center> Interactive data analysis with Jupyter notebook </center>
<center> By K. Ohta, CONFLEX Corp. </center>

入力後、Shift + Enterキーで実行

AMBER Tutorial

Interactive data analysis with Jupyter notebook

By K. Ohta, CONFLEX Corp.

AMBER力場 \$\$ V_{AMBER}=\sum_i^{n_{bonds}b_i(r_i-r_{i,eq})^2 +\sum_i^{n_{angles}a_i(\theta_i-\theta_{i,eq})^2 \\ +\sum_i^{n_{angles}}a_i(\theta_i-\theta_{i,eq})^2 \\ +\sum_i^{n_{dihedrals}}\sum_n^{n_{i,max}}\frac{V_{i,n}}{2} [1+\cos(n\phi_i-\gamma_{i,n})] \\ +\sum_{i<j}^{n_{atoms}}(\frac{A_{ij}}{r_{ij}^{12}}-\frac{B_{ij}}{r_{ij}^{6}}) +\sum_{i<j}^{n_{atoms}}\frac{q_iq_j}{4\pi\epsilon_0r_{ij}} \\ \$\$</pre>

数式入力

Linuxのコマンド

·ファイルのリスト表示 (list)

ls

・ディレクトリーの移動(change directory)

\mathbf{cd}

現在位置の確認 (print working directory)

pwd

ディレクトリーの作成(make directory)

mkdir

Linuxのコマンド2

・ファイルのコピー(copy)

cp ファイル名 コピー先名

・ファイルの移動(move)ファイル名の変更にも使用

mv ファイル名 新しい場所

ファイルやディレクトリーの削除 (remove)

rm ファイル名, rm -r ディレクトリー名

·ファイルの内容表示(more, less)

cat ファイル名

•

「Tutorial」ディレクトリーの作成

mkdir Tutorial

·補完機能

「TAB」キーを押すとファイル名が補完される

cd T (ここで「TAB」キーを押すとTutorialまで補完される)

 \downarrow

cd Tutorial

· 複数候補がある場合、リスト表示される

構造ファイルの作成

・トポロジーファイル:parm7

系に含まれる分子の構造パラメーターとトポロジーが記述されている

・座標ファイル:rst7

系の分子の初期座標が記述されている

・ 使用プログラム: LEaP (xleap, tleap)

上記2ファイルを出力する

AMBER力場

$$V_{\text{AMBER}} = \sum_{i}^{n_{\text{bonds}}} b_i \left(r_i - r_{i,\text{eq}}\right)^2 + \sum_{i}^{n_{\text{anbles}}} a_i \left(\theta_i - \theta_{i,\text{eq}}\right)^2 + \sum_{i}^{n_{\text{dihedrals}}} \sum_{i}^{n_{i,\text{max}}} \frac{V_{i,\text{n}}}{2} \left[1 + \cos\left(n\phi_i - \gamma_{i,\text{n}}\right)\right] + \sum_{i < j}^{n_{\text{atoms}}} \left(\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^6}\right) + \sum_{i < j}^{n_{\text{atoms}}} \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}}$$

water Continuum solvent model

Hydrophobic effect is roughly proportional to surface area

https://ja.wikipedia.org/wiki/力場_(化学)#/media/ファイル:MM_PEF.png

Jupyterで操作開始

import pytraj as pt # トラジェクトリーモジュール

import numpy as np # 数値計算モジュール

Smatplotlib inline # $\neg \Box \neg h + \overline{\nabla} \neg \mu$

from matplotlib import pyplot as plt

tleapの実行方法

·全てのコマンドを記述したファイルを作成(tleap.in)

%%file tleap.in # ターミナル操作の場合は、この行は不要

source leaprc.protein.ff19SB

source leaprc.water.opc

diala = sequence { ACE ALA NME }

solvateOct diala OPCBOX 10.0

saveAmberParm diala diala.parm7 diala.rst7

quit

実行

!tleap -f tleap.in

LEaPのコマンド

・タンパク質用のパラメーターセットをロード

source leaprc.protein.ff19SB

・アラニン・ジペプチドの作成:LEaPの「sequence」コマンドを利用

diala = sequence { ACE ALA NME }

- · アラニンのN末端をアセチル基(ACE)でC末端をN-メチルアミド(NME)で保護した構造が作成される
- 構造は、変数「diala」に入る
- · さらにLEaPの「solvateOct」コマンドで系を溶媒和

solvatebox diala OPCBOX 10.0 # 溶質dialaの周りに厚み10Åで水が付加(水ボックスの大きさが10Åではない)

- ・分子動力学計算用のファイルの保存
- 「saveamberparm」コマンドでparm7およびrst7ファイルを保存

saveamberparm diala diala.parm7 diala.rst7

source leaprc.water.opc

分子グラフィック (参考)

NGLViewを利用

未インストールの場合、ターミナルで以下を入力:

amber.conda install nglview -c conda-forge

PyTrajに読み込み、表示

traj = pt.load(`rst7', top=`parm7')

view = nv.show pytraj(traj)

view

分子グラフィック (VMD)

・起動後は、右図

・File -> New Moleculeを選択

「Browse」ボタンをクリック後 「parm7」ファイルを指定し、 「Load」をクリック

(この時点では、何も表示されない)

さらに「Browse」で
 「03_Prod.nc」を指定し
 「Load」をクリック

「VMD」がncファイルを読めない場合は 変換が必要

cpptraj -p parm7 -y 03_Prod.nc -x 03_Prod.crd

- 「Graphical Representations」ウィ
 ンドウで様々な表示調整が可能
- ウィンドウが表示されていなければ、
 Graphics -> Representationsを選択
- アラニン・ジペプチドだけを表示する
 ため、「Selected Atoms」を「all not water」に修正
- 「Drawing Method」メニューで表示
 方法を変更可能(図はLicorice)
- ・以下のチュートリアル等を参照:

http://ambermd.org/tutorials/VMD.php

MD計算の設定ファイル

- 動力学計算を行うには、トポロジーと座標ファイルの他に、設定が書かれた入力ファイルが必要
- 1. 構造最適化
- 2. 定積 (NVT) OK~300Kまで20psで昇温
- 定圧(NPT) 300K・1気圧条件下で、60psサン
 プリング

•

下記内容を打ち込み、「O1_Min.in」と言うファイル名で保存

%%file 01 Min.in

Minimize

&cntrl

- **imin=1**, 構造最適化を指定
- **ntx=1**, rst7ファイルから構造を読み込み
- **irest=0**, 計算のリスタートではない

maxcyc=2000, 最適化サイクルの最大値

- ncyc=1000, 最初に行う再急降下法による構造最適化のステップ数,残り(maxcyc ncyc)サイクルは共役勾配法
- **ntpr=100**, 出力ファイルへの出力頻度
- **ntwx=0**, トラジェクトリ–ファイルへの出力は行わない
- **cut=8.0**, 非結合相互作用のカットオフ距離

/

「&cntrl」から下の行の最初に1つ以上のスペースが入っている事に注意

最後の/の後には、改行を!

計算の実行

- ・動力学計算の実行には「pmemd」を利用
- ・配布環境の場合、「sander」を使用
- ・実行場所に以下のファイルが有る事を確認
 - diala.parm7
 - diala.rst7
 - 01_Min.in

ls

01 Min.in diala.parm7 diala.rst7

入門編

!pmemd -O -i 01_Min.in -o 01_Min.out -p diala.parm7 -c diala.rst7 -r 01_Min.ncrst

-inf 01 Min.info

- -0 出力ファイルが存在していても上書きする
- -i 01 Min.in 入力ファイルの指定
- -o 01 Min.out 出力ファイルの指定
- -p diala.parm7 パラメーター・トポロジーファイルの指定
- -c diala.rst7 座標ファイルの指定
- -r 01 Min.ncrst 最適化座標の入ったリスタート出力ファイルの指定
- -inf 01 Min.mdinfo 計算情報を出力するファイルの指定

最適化計算は、数秒程度で終了します

計算が終了すると、出力ファイル:01_Min.out・リスタートファイル:01_Min.ncrst・情報ファイル:01_Min.mdinfoが作成されています。このリスタートファイルを、次の昇温段階の計算で用います。

・昇温の設定入力

・昇温の動力学計算

・本番の動力学計算の設定入力

・本番の動力学計算

MD計算結果の解析

・Amberには、解析用のツールも含まれています

この図では、40 psあたりでのコンフォメーションの大幅な変化があります。この大 きなRMSDの変化は、アラニン・ジペプチド内のPhi/Psiねじれ角の大きな変化に対 応しているものと予想できます。 注)シミュレーションはランダム(ig=-1)に行っているため、全員がこのようなグ ラフにはなりません。

30