CONFLEX Tutorials

Crystal structure optimization

[Definition of energy]

A crystal structure can be built by periodically arranging a unit cell through translational symmetry (Figure 1). The unit cell is defined by an asymmetric unit, lattice constants, and space group symmetry. Therefore, in simulations, the crystal structure is constructed using the asymmetric unit, the lattice constants, the space group symmetry, and the translational symmetry, and an energy of the crystal is defined by the equation 1 as the energy per asymmetric unit.

Crystal Equations

Here, the Eintra is the sum of intramolecular interaction energies in the asymmetric unit, and the Elattice is defined by the equation 2. In the equation 2, the EAUinter is the sum of intermolecular interaction energies in the asymmetric unit. When the number of molecules in the asymmetric unit is one, the the EAUinter is zero. The second term in the equation 2 is the sum of intermolecular interaction energies between the molecule(s) in the asymmetric unit and molecules replicated by symmetry operations within a cut-off radius Rcrystal in the real space. The Ewald method is applied to the calculation of electrostatic interactions.

The Ewald method calculates coulombic potential using four terms of real space term, Φreal, reciprocal space term, Φrecip, self energy term, Φself, surface term, Φsurf. By default, the Φsurf term is omitted. This term can be activated by a keyword. Please refer to the manual.

EWald Equations

Here, the q is atomic charge, the α is Ewald convergence parameter, the |ri;S,J| is interatomic distance, the V is volume of the unit cell, the n is reciprocal lattice vector, and the r is position vector of atom in the unit cell. The Z is the number of the smallest building blocks (the asymmetric unit and replicated units created by applying symmetry operations to the asymmetric unit) in the unit cell. The parameter α and the cutoff distance in the reciprocal lattice space are automatically determined so that the interatomic interaction energy is smaller than 10-8 based on the cutoff distance in the real space. The values of these parameters can be specified by keywords. Please refer to the manual.

Crystal Model
Figure 1. Crystal model

[Types of crystal structure optimization]

The program can perform three types of crystal structure optimization, as shown blow. These optimizations are performed under a specified space group symmetry.

Molecular geometry optimization in a crystal environment (MOL)
The geometry, orientation, and position of the molecules in the crystal are optimized, while the lattice constants remain fixed during the calculation.
Crystal structure optimization assuming rigid molecules (RIGID)
The orientation and position of the molecules, as well as the lattice constants, are optimized, while the molecular geometry remains fixed during the calculation.
Full optimization of crystal structure (ALL)
All degrees of freedom that define the crystal structure, that is, the molecular geometry, orientation, and position as well as the lattice constants are relaxed.

[Execution of crystal structure optimization]

This section explains how to perform crystal structure optimization. To execute this, the following input data is required: atomic coordinates of the asymmetric unit, lattice constants, and space group. For this example, we use a crystal of hydroxy malonic acid, which is a derivative of malonic acid (Roelofsen, G.; Kanters, J.A.; Kroon, J.; Doesburg, H.M.; Koops, T. Acta Cryst.1978, B34, 2565.).

Hydroxy Tartronic Acid
Molecular structure of hydroxy malonic acid

In the case of using CMF file

We prepare the tartronicacid.cmf file, shown below, as input file. The tartronicacid.cmf contains the crystal structure data of hydroxy malonic acid in CIFMIF format (Combined CIF and MIF file, where CIF stands for Crystallographic Information File and MIF stands for Molecular Information File). You can find the tartronicacid.cmf file in the Sample_Files folder, located in the CONFLEX installation directory (Sample_Files\CONFLEX\crystal\optimization\cmf_file\tartronicacid.cmf).

tartronicacid.cmf file

data_Tartronicacid
_symmetry_cell_setting ORTHORHOMBIC
_symmetry_space_group_name_H-M 'P212121 '
_ccdc_symmetry_space_group_name P212121 
_symmetry_Int_Tables_number 19
loop_
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
1 x,y,z 
2 1/2+x,1/2-y,-z 
3 -x,1/2+y,1/2-z 
4 1/2-x,-y,1/2+z 
_cell_length_a 4.49400
_cell_length_b 8.81900
_cell_length_c 10.88200
_cell_angle_alpha 90.00000
_cell_angle_beta 90.00000
_cell_angle_gamma 90.00000
_cell_formula_units_Z 4
_cell_volume 431.28180
_exptl_crystal_density_diffrn 1.84821
loop_
_ccdc_atom_site_atom_id_number
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_ccdc_atom_site_symmetry
_ccdc_atom_site_base
1 O1 O 1.12990 -0.13910 0.36040 1_555 1
2 O2 O 0.97510 0.09280 0.30700 1_555 2
3 O3 O 1.01480 0.11550 0.66290 1_555 3
4 O4 O 1.13030 -0.12820 0.62810 1_555 4
5 O5 O 0.57240 0.09790 0.48970 1_555 5
6 C1 C 0.97750 -0.01540 0.37600 1_555 6
7 C2 C 0.78810 -0.01520 0.49230 1_555 7
8 C3 C 0.99010 -0.00160 0.60420 1_555 8
9 H1 H 0.66800 -0.11200 0.49600 1_555 9
10 H2 H 0.60500 0.14900 0.45600 1_555 10
11 H3 H 1.23700 -0.13800 0.31000 1_555 11
12 H4 H 1.27100 -0.12000 0.68000 1_555 12
loop_
_atom_id
_atom_type
_atom_attach_nh
_atom_attach_h
_atom_charge
1 O 1 1 0
2 O 1 0 0
3 O 1 0 0
4 O 1 1 0
5 O 1 1 0
6 C 3 0 0
7 C 3 1 0
8 C 3 0 0
loop_
_bond_id_1
_bond_id_2
_bond_type_ccdc
_bond_environment
1 6 S chain
1 11 S chain
2 6 D chain
3 8 D chain
4 8 S chain
4 12 S chain
5 7 S chain
5 10 S chain
6 7 S chain
7 8 S chain
7 9 S chain

[Execution from Interface]

Open the tartronicacid.cmf file using CONFLEX Interface.

Interface CMF

Select [CONFLEX] from the Calculation menu, and then click Detail Settings in the calculation setting dialog that appears.
Next, in [General Settings] dialog of the detailed settings dialog, select [Molecular Crystal] from the pull-down menu of [Calculation Type:].

General Settings

The settings for the crystal calculation are configured in the [Crystal Calculation] dialog.

Crystal Calculation

The type of crystal structure optimization can be changed using the pull-down menu of [Crystal Optimization:]. The default setting is "ALL". In this dialog, you can also change settings for calculating intermolecular interactions such as the cutoff distance and the method for calculating Coulombic interactions, and other related parameters.

After completing the calculation settings, click Submit to start the calculation.

[Execution from command line]

The calculation settings are defined by specifying keywords in the tartronicacid.ini file.

tartronicacid.ini file

CRYSTAL MMFF94S

[CRYSTAL] indicates that a crystal calculation will be performed. By default, CONFLEX carries out a full optimization of crystal structure (ALL). If you want to change the type of crystal structure optimization, use the [CRYSTAL_OPTIMIZATION=] keyword. For example: [CRYSTAL_OPTIMIZATION=MOL].
[MMFF94s] means to use MMFF94s force field.

Store the two files of tartronicacid.cmf and tartronicacid.ini in a single folder, and execute the following command to start the calculation.

C:\CONFLEX\bin\conflex-10a.exe   -par   C:\CONFLEX\par   tartronicacidenter

The command above is for Windows OS. For other OS, please refer to [How to execute CONFLEX].

In the case of using CIF file

In a CIF file, bond information (such as bond orders) is not included, although atomic coordinates of the molecule in the asymmetric unit, lattice constants, and space group information are provided.
Therefore, to perform a crystal calculation, you have to specify the bonding between atoms using the "CIF_BOND=" keyword. When a calculation is executed via the CONFLEX Interface, the program automatically generates the bond information. In this section, we use tartronicacid.cif file, which contains the crystal structure data of hydroxy malonic acid in CIF format. This file is located in Sample_Files folder in the CONFLEX installation directory (Sample_Files\CONFLEX\crystal\optimization\cif_file\tartronicacid.cif)

tartronicacid.cif file

data_Tartronicacid
_symmetry_cell_setting ORTHORHOMBIC
_symmetry_space_group_name_H-M 'P212121 '
_symmetry_Int_Tables_number 19
loop_
_symmetry_equiv_pos_as_xyz
x,y,z 
-x+1/2,-y,z+1/2 
-x,y+1/2,-z+1/2 
x+1/2,-y+1/2,-z 
_cell_length_a 4.49400
_cell_length_b 8.81900
_cell_length_c 10.88200
_cell_angle_alpha 90.00000
_cell_angle_beta 90.00000
_cell_angle_gamma 90.00000
_cell_formula_units_Z 4
_cell_volume 431.28180
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
O1 O 1.12990 -0.13910 0.36040
O2 O 0.97510 0.09280 0.30700
O3 O 1.01480 0.11550 0.66290
O4 O 1.13030 -0.12820 0.62810
O5 O 0.57240 0.09790 0.48970
C1 C 0.97750 -0.01540 0.37600
C2 C 0.78810 -0.01520 0.49230
C3 C 0.99010 -0.00160 0.60420
H1 H 0.66800 -0.11200 0.49600
H2 H 0.60500 0.14900 0.45600
H3 H 1.23700 -0.13800 0.31000
H4 H 1.27100 -0.12000 0.68000

[Execution from Interface]

Open tartronicacid.cif file using CONFLEX Interface

Interface CIF

Select [CONFLEX] from the Calculation menu, and then click Detail Settings in the calculation setting dialog that appears.
Next, in [General Settings] dialog of the detailed settings dialog, select [Molecular Crystal] from the pull-down menu of [Calculation Type:] and check the check box of [Correct Bond Order] to correct bond order.

General Settings

The settings for the crystal calculation are configured in the [Crystal Calculation] dialog.

Crystal Calculation

The type of crystal structure optimization can be changed using the pull-down menu of [Crystal Optimization:]. The default setting is "ALL". In this dialog, you can also change settings for calculating intermolecular interactions such as the cutoff distance and the method for calculating Coulombic interactions, and other related parameters.
When completing the calculation settings, click Submit to start the calculation.

[Execution from command line]

The calculation settings are defined by specifying keywords in the tartronicacid.ini file.

tartronicacid.ini file

CRYSTAL MMFF94S
CIF_BOND=(1,6,1) 
CIF_BOND=(1,11,1) 
CIF_BOND=(2,6,2) 
CIF_BOND=(3,8,2) 
CIF_BOND=(4,8,1) 
CIF_BOND=(4,12,1) 
CIF_BOND=(5,7,1) 
CIF_BOND=(5,10,1) 
CIF_BOND=(6,7,1) 
CIF_BOND=(7,8,1) 
CIF_BOND=(7,9,1) 

[CRYSTAL] indicates that a crystal calculation will be performed. By default, CONFLEX carries out a full optimization of crystal structure (ALL). If you want to change the type of crystal structure optimization, use the [CRYSTAL_OPTIMIZATION=] keyword. For example: [CRYSTAL_OPTIMIZATION=MOL].
[MMFF94s] means to use MMFF94s force field.
[CIF_BOND=] is used to define the bond information for the hydroxy malonic acid molecule. To specify a bond with bond order n between atoms i and j, use the keyword in the following format: CIF_BOND=(i,j,n)

Atom Numbers
* By using the View menu, you can change the molecular display style and show the atom serial numbers.

Store the two files of tartronicacid.cif and tartronicacid.ini in a single folder, and execute the following command to start the calculation.

C:\CONFLEX\bin\conflex-10a.exe   -par   C:\CONFLEX\par   tartronicacidenter

The command above is for Windows OS. For other OS, please refer to [How to execute CONFLEX].

In the case of using MOL file

The molecule in the MDL-MOL file is used as the asymmetric unit. Therefore, when using a MDL-MOL file for crystal calculations, you should pay attention to the orientation and spatial position of the molecule. Depending on these factors, symmetry operations may cause steric clashes between molecules in the crystal. Here, we prepare the tartronicacid.mol file, shown below, as input file. The tartronicacid.mol contains the structure data of hydroxy malonic acid molecule in MDL-MOL format. This file is located in Sample_Files folder in the CONFLEX installation directory (Sample_Files\CONFLEX\crystal\optimization\mol_file\tartronicacid.mol).

tartronicacid.mol file

Tartronicacid.mol


 12 11  0  0  0  0  0  0  0  0  1 V2000
    5.0778   -1.2267    3.9219 O   0  0  0  0  0
    4.3821    0.8184    3.3408 O   0  0  0  0  0
    4.5605    1.0186    7.2137 O   0  0  0  0  0
    5.0796   -1.1306    6.8350 O   0  0  0  0  0
    2.5724    0.8634    5.3289 O   0  0  0  0  0
    4.3929   -0.1358    4.0916 C   0  0  0  0  0
    3.5417   -0.1340    5.3572 C   0  0  0  0  0
    4.4495   -0.0141    6.5749 C   0  0  0  0  0
    3.0020   -0.9877    5.3975 H   0  0  0  0  0
    2.7189    1.3140    4.9622 H   0  0  0  0  0
    5.5591   -1.2170    3.3734 H   0  0  0  0  0
    5.7119   -1.0583    7.3998 H   0  0  0  0  0
  1  6  1  0  0
  1 11  1  0  0
  2  6  2  0  0
  3  8  2  0  0
  4  8  1  0  0
  4 12  1  0  0
  5  7  1  0  0
  5 10  1  0  0
  6  7  1  0  0
  7  8  1  0  0
  7  9  1  0  0
M  END

[Execution from Interface]

Open the tartronicacid.mol file using CONFLEX Interface.

Interface MOL

Select [CONFLEX] from the Calculation menu, click Detail Settings in the calculation setting dialog that appears.
Next, in [General Settings] dialog of the detailed settings dialog, select [Molecular Crystal] from the pull-down menu of [Calculation Type:].

General Settings

The settings for the crystal calculation are configured in the [Crystal Calculation] dialog.

Crystal Opt

The type of crystal structure optimization can be changed using the pull-down menu of [Crystal Optimization:]. The default setting is "ALL". In this dialog, you can also change settings for calculating intermolecular interactions such as the cutoff distance and the method for calculating Coulombic interactions, and other related parameters.

The tartronicacid.mol file does not include space group and lattice constant information. Therefore, these parameters need to be set manually in this dialog.
To set the space group, select P212121 from the [Space group:] pull-down menu. Next, to enter the lattice constants, check the [Lattice Constants] checkbox, and input the values accordingly. The lattice constants for the crystal structure of hydroxy malonic acid are a=4.494 Å,b=8.819 Å,c=10.882 Å,α=90.0 °,β=90.0 °,γ=90.0 °.

Crystal Opt Settings

After completing the calculation settings, click Submit to start the calculation.

[Execution from command line]

The calculation settings are defined by specifying keywords in the tartronicacid.ini file.

tartronicacid.ini file

CRYSTAL MMFF94S
SPACE_GROUP=P212121
LATTICE_CONSTANT=(4.494,8.819,10.882,90.0,90.0,90.0) 

[CRYSTAL] indicates that a crystal calculation will be performed. By default, CONFLEX carries out a full optimization of crystal structure (ALL). If you want to change the type of crystal structure optimization, use the [CRYSTAL_OPTIMIZATION=] keyword. For example: [CRYSTAL_OPTIMIZATION=MOL].
[MMFF94s] means to use MMFF94s force field.
The tartronicacid.mol file does not include space group and lattice constant information. These parameters should be specified using the [SPACE_GROUP=] and [LATTICE_CONSTANT=] keywords. For the crystal structure of hydroxy malonic acid, the space group is P212121, and the lattice constants are: a=4.494 Å,b=8.819 Å,c=10.882 Å,α=90.0 °,β=90.0 °,γ=90.0 °.

Store the two files of tartronicacid.mol and tartronicacid.ini in a single folder, and execute the following command to start the calculation.

C:\CONFLEX\bin\conflex-10a.exe   -par   C:\CONFLEX\par   tartronicacidenter

The command above is for Windows OS. For other OS, please refer to [How to execute CONFLEX].

[Structure optimization with constrains]

When there is more than one molecule in the asymmetric unit, CONFLEX can perform crystal structure optimization with constraints using one of the two methods described below. These methods are cannot be used simultaneously.

Here, to explain these functions, we use the co-crystal butylparaben–isonicotinamide. From the supporting information of Bhardwaj’s paper [R. M. Bhardwaj, H. Yang and A. J. Florence, Acta Cryst. (2016). E72, 53-55], the structure of this co-crystal is available as cv5494sup1.cif. The cv5494sup1.cif is modified for treating by CONFLEX program and the modified version is saved as BPN-ISN.cif. The BPN-ISN.cif file is located in Sample_Files folder in the CONFLEX installation directory (Sample_Files\CONFLEX\crystal\molecular.fixing\BPN-ISN.cif).

BPN-ISN.cif file

data_I
_symmetry_cell_setting     triclinic
_symmetry_Int_Tables_number 2
_symmetry_space_group_name_H-M     'P-1'
loop_
_symmetry_equiv_pos_as_xyz
x,y,z
-x,-y,-z
_cell_length_a     5.6257(6)
_cell_length_b     9.8661(11)
_cell_length_c     14.3979(15)
_cell_angle_alpha     90.834(7)
_cell_angle_beta     91.431(7)
_cell_angle_gamma     91.645(7)
_cell_volume     798.47(15)
_cell_formula_units_Z     2
loop_
_atom_site_type_symbol
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_calc_flag
_atom_site_occupancy
_atom_site_disorder_assembly
_atom_site_disorder_group
H H1N -0.623(3) 1.480(2) 1.4226(13) 0.019(5) Uiso d 1 . .
H H2N -0.626(4) 1.399(2) 1.3256(16) 0.035(6) Uiso d 1 . .
H H3O 0.140(5) 0.939(3) 1.1807(17) 0.054(7) Uiso d 1 . .
O O4 0.1197(2) 0.47988(13) 0.82145(8) 0.0227(3) Uani d 1 . .
O O1 -0.2641(2) 1.38157(14) 1.49057(9) 0.0275(3) Uani d 1 . .
N N1 -0.5594(3) 1.41555(17) 1.38514(11) 0.0238(4) Uani d 1 . .
O O2 0.2637(2) 0.88155(15) 1.16227(9) 0.0308(4) Uani d 1 . .
N N2 -0.0392(3) 1.05682(16) 1.24155(10) 0.0234(4) Uani d 1 . .
O O3 -0.2134(2) 0.59634(14) 0.80166(9) 0.0297(3) Uani d 1 . .
C C13 -0.0315(3) 0.57543(19) 0.84578(12) 0.0207(4) Uani d 1 . .
C C7 0.2633(3) 0.63083(19) 0.97609(12) 0.0220(4) Uani d 1 . .
H H8 0.3619 0.5641 0.9542 0.026 Uiso calc 1 . .
C C6 -0.3631(3) 1.35566(18) 1.41440(12) 0.0194(4) Uani d 1 . .
C C12 0.0462(3) 0.65243(18) 0.93023(12) 0.0190(4) Uani d 1 . .
C C14 0.0586(3) 0.40447(19) 0.73615(12) 0.0223(4) Uani d 1 . .
H H15A 0.0438 0.4660 0.6845 0.027 Uiso calc 1 . .
H H15B -0.0918 0.3552 0.7423 0.027 Uiso calc 1 . .
C C8 0.3330(3) 0.7076(2) 1.05364(13) 0.0239(4) Uani d 1 . .
H H9 0.4775 0.6920 1.0839 0.029 Uiso calc 1 . .
C C2 -0.0520(3) 1.18936(19) 1.38204(13) 0.0234(4) Uani d 1 . .
H H2 0.0162 1.2121 1.4399 0.028 Uiso calc 1 . .
C C10 -0.0302(3) 0.83018(19) 1.04128(12) 0.0229(4) Uani d 1 . .
H H11 -0.1290 0.8969 1.0631 0.027 Uiso calc 1 . .
C C16 0.2264(3) 0.2420(2) 0.62252(13) 0.0242(4) Uani d 1 . .
H H17A 0.0722 0.1955 0.6171 0.029 Uiso calc 1 . .
H H17B 0.2306 0.3126 0.5764 0.029 Uiso calc 1 . .
C C5 -0.3533(3) 1.21153(19) 1.26476(12) 0.0213(4) Uani d 1 . .
H H6 -0.4918 1.2498 1.2420 0.026 Uiso calc 1 . .
C C15 0.2548(3) 0.30708(19) 0.71924(12) 0.0220(4) Uani d 1 . .
H H16A 0.2511 0.2370 0.7658 0.026 Uiso calc 1 . .
H H16B 0.4075 0.3551 0.7248 0.026 Uiso calc 1 . .
C C1 -0.2580(3) 1.25031(18) 1.35125(12) 0.0185(4) Uani d 1 . .
C C9 0.1866(3) 0.80852(19) 1.08652(12) 0.0221(4) Uani d 1 . .
C C11 -0.0986(3) 0.75279(19) 0.96404(12) 0.0223(4) Uani d 1 . .
H H12 -0.2437 0.7680 0.9342 0.027 Uiso calc 1 . .
C C3 0.0504(3) 1.0945(2) 1.32551(13) 0.0251(4) Uani d 1 . .
H H3 0.1888 1.0544 1.3467 0.030 Uiso calc 1 . .
C C4 -0.2387(3) 1.11486(19) 1.21283(13) 0.0240(4) Uani d 1 . .
H H5 -0.3042 1.0892 1.1551 0.029 Uiso calc 1 . .
C C17 0.4194(4) 0.1414(2) 0.60224(14) 0.0314(5) Uani d 1 . .
H H18A 0.5725 0.1869 0.6068 0.047 Uiso calc 1 . .
H H18B 0.3946 0.1042 0.5407 0.047 Uiso calc 1 . .
H H18C 0.4130 0.0696 0.6465 0.047 Uiso calc 1 . .

* Constraint by harmonic potential

In structure optimization, restrictions on structural changes can be imposed on interatomic distances, bond angles, dihedral angles, and out-of-plane angles defined between molecules in the asymmetric unit using harmonic potentials. These harmonic potentials are specified using the keywords described below.

Structural parameter Keyword Explanation
Interatomic distance CRYSTAL_PSEUDO_DIST=(I,J,STD,FK) The harmonic potential with the standard distance STD (Å) and the force constant FK (kcal・mol-1・Å-2) is applied to the interatomic distance between atoms I and J.
Angle CRYSTAL_PSEUDO_ANGL=(I,J,K,STD,FK) The harmonic potential with the standard angle STD (°) and the force constant FK (kcal・mol-1・rad-2) is applied to the angle of I-J-K.
Dihedral angle CRYSTAL_PSEUDO_TORS=(I,J,K,L,STD,FK) The harmonic potential with the standard angle STD (°) and the force constant FK (kcal・mol-1・rad-2) is applied to the dihedral angle of I-J-K-L.
Out of plane angle CRYSTAL_PSEUDO_OOPL=(I,J,K,L,STD,FK) The harmonic potential with the standard angle STD (°) and the force constant FK (kcal・mol-1・rad-2) is applied to the out of plane angle of I=J-K(-L).

[Execution from Interface]

Open the BPN-ISN.cif file using CONFLEX Interface.

Interface BPN-ISN

Select [CONFLEX] from the Calculation menu, and then click Detail Settings in the calculation setting dialog that appears.
Next, in [General Settings] dialog of the detailed settings dialog, select [Molecular Crystal] from the pull-down menu of [Calculation Type:] and check the check box of [Correct Bond Order] to correct bond order.

General Settings

The settings for the crystal calculation are configured in the [Crystal Calculation] dialog.

Crystal Opt

Select [All] from the pull-down menu of [Crystal optimization:] on this dialog. Other optimization methods are also available. Next, click Edit & Submit in the detailed settings dialog.

A dialog displaying the keywords for the calculation settings will appear.

Edit and Submit BPN-ISN

Here, we apply harmonic potentials to the interatomic distance between hydrogen (I=3) and nitrogen (J=8) atoms, and to the angle defined by hydrogen (I=3), oxygen (J=7), and nitrogen (K=8) atoms. To do this, two new keywords need to be added to the dialog.

CRYSTAL_PSEUDO_DIST=(3,8,1.794,10000.0)
CRYSTAL_PSEUDO_ANGL=(3,7,8,10.15,10000.0)

The modified dialog is shown below.

Edit Submit Modified

When completing the modifications, click Submit to start the calculation. In the optimized structure, each structural parameter constrained by the harmonic potentials is approximately equal to the standard value STD.

[Execution from command line]

The calculation settings are defined by specifying keywords in the BPN-ISN.ini file.

BPN-ISN.ini file

CRYSTAL MMFF94S
CRYSTAL_PSEUDO_DIST=(3,8,1.794,10000.0)
CRYSTAL_PSEUDO_ANGL=(3,7,8,10.15,10000.0)
CIF_BOND=(1,6,1)
CIF_BOND=(2,6,1)
CIF_BOND=(3,7,1)
CIF_BOND=(4,10,1)
CIF_BOND=(4,15,1)
CIF_BOND=(5,13,2)
CIF_BOND=(6,13,1)
CIF_BOND=(7,33,1)
CIF_BOND=(8,38,2)
CIF_BOND=(8,36,1)
CIF_BOND=(9,10,2)
CIF_BOND=(10,14,1)
CIF_BOND=(11,12,1)
CIF_BOND=(11,18,1)
CIF_BOND=(11,14,2)
CIF_BOND=(13,32,1)
CIF_BOND=(14,34,1)
CIF_BOND=(15,17,1)
CIF_BOND=(15,16,1)
CIF_BOND=(15,29,1)
CIF_BOND=(18,19,1)
CIF_BOND=(18,33,2)
CIF_BOND=(20,21,1)
CIF_BOND=(20,36,2)
CIF_BOND=(20,32,1)
CIF_BOND=(22,23,1)
CIF_BOND=(22,34,2)
CIF_BOND=(22,33,1)
CIF_BOND=(24,26,1)
CIF_BOND=(24,25,1)
CIF_BOND=(24,40,1)
CIF_BOND=(24,29,1)
CIF_BOND=(27,28,1)
CIF_BOND=(27,38,1)
CIF_BOND=(27,32,2)
CIF_BOND=(29,31,1)
CIF_BOND=(29,30,1)
CIF_BOND=(34,35,1)
CIF_BOND=(36,37,1)
CIF_BOND=(38,39,1)
CIF_BOND=(40,42,1)
CIF_BOND=(40,41,1)
CIF_BOND=(40,43,1)

Here, we apply harmonic potentials to the interatomic distance between hydrogen (I=3) and nitrogen (J=8) atoms, and to the angle defined by hydrogen (I=3), oxygen (J=7), and nitrogen (K=8) atoms, using PSEUDO_***= keywords.

[CRYSTAL] indicates that a crystal calculation will be performed.
[MMFF94s] means to use MMFF94s force field.
[CIF_BOND=] is used to define the bond information for the isonicotinamide and butylparaben molecules. To specify a bond with bond order n between atoms i and j, use the keyword in the following format: CIF_BOND=(i,j,n).

BPN-ISN Numbers
* By using the View menu, you can change the molecular display style and show the atom serial numbers.

Store the two files of BPN-ISN.cif and BPN-ISN.ini in a single folder, and execute the following command to start the calculation. In the optimized structure, each structural parameter constrained by the harmonic potentials is approximately equal to the standard value STD.

C:\CONFLEX\bin\conflex-10a.exe   -par   C:\CONFLEX\par   BPN-ISNenter

The command above is for Windows OS. For other OS, please refer to [How to execute CONFLEX].

* Constraints of structure and position of specified molecule

The following operations allow for crystal structure optimization while fixing the structure and position of a specified molecule.

[Execution from Interface]

Open the BPN-ISN.cif file using CONFLEX Interface.

Interface BPN-ISN

Select [CONFLEX] from the Calculation menu, and then click Detail Settings in the calculation setting dialog that appears.
Next, in [General Settings] dialog of the detailed settings dialog, select [Molecular Crystal] from the pull-down menu of [Calculation Type:] and check the check box of [Correct Bond Order] to correct bond order.

General Settings

The settings for the crystal calculation are configured in the [Crystal Calculation] dialog.

Crystal Opt

Select [Molecule] from the pull-down menu of [Crystal optimization:] on this dialog. Other methods cannot be used.
Next, click Edit & Submit in the detailed settings dialog.

A dialog displaying the keywords for the calculation settings will appear.

Edit and Submit BPN-ISN

The molecule to be frozen during crystal structure optimization is defined by the [CRYSTAL_FIXED_MOL=] keyword.
The molecular ID of each molecule in the input file is automatically determined based on the atom serial number. For example, in the case of BPN-ISN.cif, the molecular ID for isonicotinamide is 1 and it for butylparaben is 2. To freeze the structure and position of butylparaben, we add the [CRYSTAL_FIXED_MOL=2] keyword to this dialog. If you want to optimize the hydrogen atom positions of butylparaben, you should also add the [CRYSTAL_FIXED_MOL=EXCLUDE_HYDROGEN] keyword to this dialog.

The modified dialog is shown below.

Edit Submit Modified

When completing the modifications, click Submit to start the calculation. The structure and position of buthlparaben in the crystal are equivalent after and before the optimization.

[Execution from command line]

The calculation settings are defined by specifying keywords in the BPN-ISN.ini file.

BPN-ISN.ini file

CRYSTAL MMFF94S
CRYSTAL_OPTIMIZATION=MOL 
CRYSTAL_FIXED_MOL=2 
CIF_BOND=(1,6,1)
CIF_BOND=(2,6,1)
CIF_BOND=(3,7,1)
CIF_BOND=(4,10,1)
CIF_BOND=(4,15,1)
CIF_BOND=(5,13,2)
CIF_BOND=(6,13,1)
CIF_BOND=(7,33,1)
CIF_BOND=(8,38,2)
CIF_BOND=(8,36,1)
CIF_BOND=(9,10,2)
CIF_BOND=(10,14,1)
CIF_BOND=(11,12,1)
CIF_BOND=(11,18,1)
CIF_BOND=(11,14,2)
CIF_BOND=(13,32,1)
CIF_BOND=(14,34,1)
CIF_BOND=(15,17,1)
CIF_BOND=(15,16,1)
CIF_BOND=(15,29,1)
CIF_BOND=(18,19,1)
CIF_BOND=(18,33,2)
CIF_BOND=(20,21,1)
CIF_BOND=(20,36,2)
CIF_BOND=(20,32,1)
CIF_BOND=(22,23,1)
CIF_BOND=(22,34,2)
CIF_BOND=(22,33,1)
CIF_BOND=(24,26,1)
CIF_BOND=(24,25,1)
CIF_BOND=(24,40,1)
CIF_BOND=(24,29,1)
CIF_BOND=(27,28,1)
CIF_BOND=(27,38,1)
CIF_BOND=(27,32,2)
CIF_BOND=(29,31,1)
CIF_BOND=(29,30,1)
CIF_BOND=(34,35,1)
CIF_BOND=(36,37,1)
CIF_BOND=(38,39,1)
CIF_BOND=(40,42,1)
CIF_BOND=(40,41,1)
CIF_BOND=(40,43,1)

The molecule to be frozen during crystal structure optimization is defined by the [CRYSTAL_FIXED_MOL=] keyword. The molecular ID of each molecule in the input file is automatically determined based on the atom serial number. For example, in the case of BPN-ISN.cif, the molecular ID for isonicotinamide is 1 and it for butylparaben is 2. To freeze the structure and position of butylparaben, we add the [CRYSTAL_FIXED_MOL=2] keyword to the ini file. If you want to optimize the hydrogen atom positions of butylparaben, you should also add the [CRYSTAL_FIXED_MOL=EXCLUDE_HYDROGEN] keyword to the ini file.

In the case of optimization with this restrictions, only the crystal structure optimization option [CRYSTAL_OPTIMIZATION=MOL] can be selected.

[CRYSTAL] indicates that a crystal calculation will be performed.
[MMFF94s] means to use MMFF94s force field.
[CIF_BOND=] is used to define the bond information for the isonicotinamide and butylparaben molecules. To specify a bond with bond order n between atoms i and j, use the keyword in the following format: CIF_BOND=(i,j,n).

BPN-ISN Numbers
* By using the View menu, you can change the molecular display style and show the atom serial numbers.

Store the two files of BPN-ISN.cif and BPN-ISN.ini in a single folder, and execute the following command to start the calculation. The structure and position of buthlparaben in the crystal are equivalent after and before the optimization.

C:\CONFLEX\bin\conflex-10a.exe   -par   C:\CONFLEX\par   BPN-ISNenter

The command above is for Windows OS. For other OS, please refer to [How to execute CONFLEX].

[Output files]

After completing the calculation, you can obtain the output files listed below.

File type Explanation
(Input file name).bso Detailed information on the crystal calculation is provided in this file.
(Input file name).ical Powder X-ray diffraction data of the initial and optimized structures are provided in this file.
(Input file name)-F.cmf The crystal structure data after optimization is provided in this file in CIFMIF file format (In the case of using cmf/mol file as input).
(Input file name)-F.cif The rystal structure data after optimization is provided in this file in CIF file format (In the case of using cif file as input).

The [CRYSTAL STRUCTURE INFORMATION] section in the bso file provides information about the crystal structure model. In the bso file, these data are shown for both the initial and optimized structures. Below is the corresponding section from "tartronicacid.bso".

  --------------------------  CRYSTAL STRUCTURE INFORMATION  --------------------------

                            CRYSTAL SYSTEM:   ORTHORHOMBIC   
                          SPACE GROUP NAME:   P212121 
                                    NUMBER:      19

           SYMMETRY EQUIVALENT POSITION  1:   x,y,z                    
                                         2:   1/2+x,1/2-y,-z           
                                         3:   -x,1/2+y,1/2-z           
                                         4:   1/2-x,-y,1/2+z           

                         CELL LENGTHS    a:        4.5326 ANGSTROM
                                         b:        8.7834
                                         c:       11.0393
                         CELL ANGLES alpha:       90.0000 DEGREE
                                      beta:       90.0000
                                     gamma:       90.0000

                              CELL  VOLUME:      439.4946 ANGSTROM**3
                              CELL DENSITY:        1.8137 MG/M**3

                                   Z      :        4 (ZCFX:      4)

                      CRYSTAL RADIUS (VDW):       20.00 ANGSTROM
                CRYSTAL RADIUS (COULOMBIC):       20.00 ANGSTROM
                        CRYSTAL PACKING GA:         15 (PGA:         8  NGA:        -7)
                                        GB:         11 (PGB:         6  NGB:        -5)
                                        GC:          9 (PGC:         5  NGC:        -4)

          NUM. OF ATOMS IN ASYMMETRIC UNIT:         12
          NUM. OF MOLS  IN ASYMMETRIC UNIT:          1
                NUM. OF ATOMS IN UNIT CELL:         48
             NUM. OF CALCULATED UNIT CELLS:        196
        NUM. OF CALCULATED MOLECULES (VDW):        519
            NUM. OF CALCULATED ATOMS (VDW):       6228
    NUM. OF CALCULATED MOLECULES (COULOM.):        519
        NUM. OF CALCULATED ATOMS (COULOM.):       6228

                     INTRAMOLECULAR ENERGY:       18.3350 KCAL/MOL
                            LATTICE ENERGY:      -30.9465 KCAL/MOL
                            CRYSTAL ENERGY:      -12.6115 KCAL/MOL

                      CALCULATED  PRESSURE:       -0.0000 GPa
                                  ENTHALPY:      -12.6115 KCAL/MOL

                       STRESS TENSOR (GPa):    1.11450E-13     0.0000         0.0000    
                                                0.0000        6.14966E-13   -1.72801E-20
                                                0.0000       -1.72801E-20   -8.12269E-14
          
Item Explanation
CRYSTAL RADIUS(VDW): Cutoff distance for vdW interactions
CRYSTAL RADIUS(COULOMBIC): Cutoff distance for coulombic interactions on real space
CRYSTAL PACKING GA GB GC: Packing area of the unit cell along a, b, and c axes
NUM. OF ATOMS IN ASYMMETRIC UNIT: Total number of atoms in the asymmetric unit
NUM. OF MOLS IN ASYMMETRIC UNIT: Total number of molecules in the asymmetric unit
NUM. OF ATOMS IN UNIT CELL: Total number of atoms in the unit cell
NUM. OF CALCULATED UNIT CELLS: Total number of unit cells in the crystal model
NUM. OF CALCULATED MOLECULES (VDW): Total number of molecules included in the calculation of vdW interactions
NUM. OF CALCULATED ATOMS (VDW): Total number of atoms included in the calculation of vdW interactions
NUM. OF CALCULATED MOLECULES (COULOM.) Total number of molecules included in the calculation of coulombic interactions (real space)
NUM. OF CALCULATED ATOMS (COULOM.): Total number of atoms included in the calculation of coulombic interactions (real space)
INTRAMOLECULAR ENERGY: Eintra
LATTICE ENERGY: Elattice
CRYSTAL ENERGY: Ecrystal
CALCULATED PRESSURE: Pressure calculated from the stress tensor
ENTHALPY: Enthalpy
STRESS TENSOR (GPa): Stress tensor

The powder X-ray diffraction data of initial (NAME: INITIAL STRUCTURE) and optimized (NAME: FINAL STRUCTURE) structures are output to the ical file. Below is the corresponding section from "tartronicacid.ical".

 ------------ SIMULATED POWDER PATTERNS ------------
    CID:     1
   NAME: INITIAL STRUCTURE             
  X-RAY: Cu (KA1)
   WAVE: 1.54059290
2*THETA:   0.000 -  50.000 ,   0.020 STEP

 H   K   L  2*THETA       INTENSITY         d
            (DEGREE)                   (ANGSTROME)
 0   0   0    0.000           0.000      0.00000
 0   0   0    0.020           0.000      0.00000
 0   0   0    0.040           0.000      0.00000
 0   0   0    0.060           0.000      0.00000
 0   0   0    0.080           0.000      0.00000
 0   0   0    0.100           0.000      0.00000
 
* snip *

------------ SIMULATED POWDER PATTERNS ------------
    CID:     2
   NAME: FINAL STRUCTURE               
  X-RAY: Cu (KA1)
   WAVE: 1.54059290
2*THETA:   0.000 -  50.000 ,   0.020 STEP

 H   K   L  2*THETA       INTENSITY         d
            (DEGREE)                   (ANGSTROME)
 0   0   0    0.000           0.000      0.00000
 0   0   0    0.020           0.000      0.00000
 0   0   0    0.040           0.000      0.00000
 0   0   0    0.060           0.000      0.00000
 0   0   0    0.080           0.000      0.00000
 0   0   0    0.100           0.000      0.00000

 * snip *

[Visualization of calculation results]

[If you executed the calculation using Interface]

After submitting a job, the Job Manager appears at the bottom of the CONFLEX interface window, displaying the status of the executed calculation. When the job status changes to "Finished", double-click the corresponding row (highlighted in red). The output file (.bso file) will open and the optimized structure will be displayed.

Interface Job Manager

After opening the output file (-F.cmf or -F.cif file), you can display the powder X-ray diffraction pattern by selecting [Spectra_Analyzer] from [Application] menu.

Crystal PXRD

[If you executed the calculation using command line]

All output files will be stored in the folder containing the input files. By opeing the -F.cmf/-F.cif or .bso file, you can visualize the optimized crystal structure.

Interface Opt Struct

After opening the output file (-F.cmf or -F.cif file), you can display the powder X-ray diffraction pattern by selecting [Spectra_Analyzer] from [Application] menu.

Crystal PXRD

[Available space groups]

International Table Number Space group name
1 P1
2 P-1
3 P2 unique axis b
3 P2 unique axis c
4 P21 unique axis b
4 P21 unique axis c
5 C2 unique axis b
5 C2 unique axis c
6 PM unique axis b
6 PM unique axis c
7 PC unique axis b
7 PC unique axis c
8 CM unique axis b
8 CM unique axis c
9 CC unique axis b
9 CC unique axis c
10 P2/M unique axis b
10 P2/M unique axis c
11 P21/M unique axis b
11 P21/M unique axis c
12 C2/M unique axis b
12 C2/M unique axis c
13 P2/C unique axis b
13 P2/C unique axis c
14 P21/C unique axis b
14 P21/C unique axis c
15 C2/C unique axis b
15 C2/C unique axis c
16 P222
17 P2221
18 P21212
19 P212121
20 C2221
21 C222
22 F222
23 I222
24 I212121
25 PMM2
26 PMC21
27 PCC2
28 PMA2
29 PCA21
30 PNC2
31 PMN21
32 PBA2
33 PNA21
34 PNN2
35 CMM2
36 CMC21
37 CCC2
38 AMM2
39 ABM2
40 AMA2
41 ABA2
42 FMM2
43 FDD2
44 IMM2
45 IBA2
46 IMA2
47 PMMM
48 PNNN origin choice 1
48 PNNN origin choice 2
49 PCCM
50 PBAN origin choice 1
50 PBAN origin choice 2
51 PMMA
52 PNNA
53 PMNA
54 PCCA
55 PBAM
56 PCCN
57 PBCM
58 PNNM
59 PMMN origin choice 1
59 PMMN origin choice 2
60 PBCN
61 PBCA
62 PNMA
63 CMCM
64 CMCA
65 CMMM
66 CCCM
67 CMMA
68 CCCA origin choice 1
68 CCCA origin choice 2
69 FMMM
70 FDDD origin choice 1
70 FDDD origin choice 2
71 IMMM
72 IBAM
73 IBCA
74 IMMA
75 P4
76 P41
77 P42
78 P43
79 I4
80 I41
81 P-4
82 I-4
83 P4/M
84 P42/M
85 P4/N origin choice 1
85 P4/N origin choice 2
86 P42/N origin choice 1
86 P42/N origin choice 2
87 I4/M
88 I41/A origin choice 1
88 I41/A origin choice 2
89 P422
90 P4212
91 P4122
92 P41212
93 P4222
94 P42212
95 P4322
96 P43212
97 I422
98 I4122
99 P4MM
100 P4BM
101 P42CM
102 P42NM
103 P4CC
104 P4NC
105 P42MC
106 P42BC
107 I4MM
108 I4CM
109 I41MD
110 I41CD
111 P-42M
112 P-42C
113 P-421M
114 P-421C
115 P-4M2
116 P-4C2
117 P-4B2
118 P-4N2
119 I-4M2
120 I-4C2
121 I-42M
122 I-42D
123 P4/MMM
124 P4/MCC
125 P4/NBM origin choice 1
125 P4/NBM origin choice 2
126 P4/NNC origin choice 1
126 P4/NNC origin choice 2
127 P4/MBM
128 P4/MNC
129 P4/NMM origin choice 1
129 P4/NMM origin choice 2
130 P4/NCC origin choice 1
130 P4/NCC origin choice 2
131 P42/MMC
132 P42/MCM
133 P42/NBC origin choice 1
133 P42/NBC origin choice 2
134 P42/NNM origin choice 1
134 P42/NNM origin choice 2
135 P42/MBC
136 P42/MNM
137 P42/NMC origin choice 1
137 P42/NMC origin choice 2
138 P42/NCM origin choice 1
138 P42/NCM origin choice 2
139 I4/MMM
140 I4/MCM
141 I41/AMD origin choice 1
141 I41/AMD origin choice 2
142 I41/ACD origin choice 1
142 I41/ACD origin choice 2
143 P3
144 P31
145 P32
146 R3 hexagonal axes
146 R3 rhombohedral axes
147 P-3
148 R-3 hexagonal axes
148 R-3 rhombohedral axes
149 P312
150 P321
151 P3112
152 P3121
153 P3212
154 P3221
155 R32 hexagonal axes
155 R32 rhombohedral axes
156 P3M1
157 P31M
158 P3C1
159 P31C
160 R3M hexagonal axes
160 R3M rhombohedral axes
161 R3C hexagonal axes
161 R3C rhombohedral axes
162 P-31M
163 P-31C
164 P-3M1
165 P-3C1
166 R-3M hexagonal axes
166 R-3M rhombohedral axes
167 R-3C hexagonal axes
167 R-3C rhombohedral axes
168 P6
169 P61
170 P65
171 P62
172 P64
173 P63
174 P-6
175 P6/M
176 P63/M
177 P622
178 P6122
179 P6522
180 P6222
181 P6422
182 P6322
183 P6MM
184 P6CC
185 P63CM
186 P63MC
187 P-6M2
188 P-6C2
189 P-62M
190 P-62C
191 P6/MMM
192 P6/MCC
193 P63/MCM
194 P63/MMC
195 P23
196 F23
197 I23
198 P213
199 I213
200 PM-3
201 PN-3 origin choice 1
201 PN-3 origin choice 2
202 FM-3
203 FD-3 origin choice 1
203 FD-3 origin choice 2
204 IM-3
205 PA-3
206 IA-3
207 P432
208 P4232
209 F432
210 F4132
211 I432
212 P4332
213 P4132
214 I4132
215 P-43M
216 F-43M
217 I-43M
218 P-43N
219 F-43C
220 I-43D
221 PM-3M
222 PN-3N origin choice 1
222 PN-3N origin choice 2
223 PM-3N
224 PN-3M origin choice 1
224 PN-3M origin choice 2
225 FM-3M
226 FM-3C
227 FD-3M origin choice 1
227 FD-3M origin choice 2
228 FD-3C origin choice 1
228 FD-3C origin choice 2
229 IM-3M
230 IA-3D

[Available X-ray sources]

Kα1 wavelength (Ang.)
Mg 9.889554
Al 8.339514
Si 7.125588
S 5.3722
Cl 4.727818
Ar 4.191938
K 3.7412838
Cr 2.289726
Mn 2.101854
Fe 1.936041
Co 1.788996
Ni 1.65793
Cu 1.5405929
Ga 1.340127
As 1.175956
Se 1.10478
Br 1.039756
Kr 0.980267
Zr 0.7859579
Mo 0.70931715
Ru 0.6430994
Rh 0.6132937
Pd 0.5854639
Ag 0.55942178
Cd 0.5350147
In 0.5121251
Sn 0.4906115
Sb 0.47037
Xe 0.4163508
Ba 0.38512464
Nd 0.33185689
Pm 0.3201648
Sm 0.30904506
Ho 0.2607608
Er 0.25237359
Tm 0.24434486
W 0.20901314
Au 0.1801978
Pb 0.16537816
Bi 0.1607903