Description
The following method keywords specify various Complete Basis Set (CBS) methods of Petersson and coworkers for computing very accurate energies [ Nyden81 M. R. Nyden and G. A. Petersson, “Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions,” J. Chem. Phys., 75 (1981) 1843-62. DOI: , Petersson88 G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, and J. Mantzaris, “A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms,” J. Chem. Phys., 89 (1988) 2193-218. DOI: , Petersson91 G. A. Petersson and M. A. Al-Laham, “A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms,” J. Chem. Phys., 94 (1991) 6081-90. DOI: , Petersson91a G. A. Petersson, T. G. Tensfeldt, and J. A. Montgomery Jr., “A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods,” J. Chem. Phys., 94 (1991) 6091-101. DOI: , Montgomery94 J. A. Montgomery Jr., J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. IV. An improved atomic pair natural orbital method,” J. Chem. Phys., 101 (1994) 5900-09. DOI: , Ochterski96 J. W. Ochterski, G. A. Petersson, and J. A. Montgomery Jr., “A complete basis set model chemistry. V. Extensions to six or more heavy atoms,” J. Chem. Phys., 104 (1996) 2598-619. DOI: , Montgomery99 J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” J. Chem. Phys., 110 (1999) 2822-27. DOI: , Montgomery00 J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VII. Use of the minimum population localization method,” J. Chem. Phys., 112 (2000) 6532-42. DOI: ]:
- CBS-4M
- CBS-QB3
- CBS-APNO
The keywords refer to the modified version of CBS-4 [ Ochterski96 J. W. Ochterski, G. A. Petersson, and J. A. Montgomery Jr., “A complete basis set model chemistry. V. Extensions to six or more heavy atoms,” J. Chem. Phys., 104 (1996) 2598-619. DOI: , Montgomery00 J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VII. Use of the minimum population localization method,” J. Chem. Phys., 112 (2000) 6532-42. DOI: ], CBS-Q//B3 [ Montgomery99 J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” J. Chem. Phys., 110 (1999) 2822-27. DOI: , Montgomery00 J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VII. Use of the minimum population localization method,” J. Chem. Phys., 112 (2000) 6532-42. DOI: ] and CBS-APNO [ Ochterski96 J. W. Ochterski, G. A. Petersson, and J. A. Montgomery Jr., “A complete basis set model chemistry. V. Extensions to six or more heavy atoms,” J. Chem. Phys., 104 (1996) 2598-619. DOI: ] methods, respectively. No basis set should be specified with any of these keywords. The RO prefix may be added to CBS-QB3 to request the ROCBS-QB3 method [ Wood06 G. P. F. Wood, L. Radom, G. A. Petersson, E. C. Barnes, M. J. Frisch, and J. A. Montgomery Jr. , “A restricted-open-shell complete-basis-set model chemistry,” J. Chem. Phys., 125 (2006) 094106: 1-16. DOI: ].
These methods are complex energy computations involving several pre-defined calculations on the specified system. All of these distinct steps are performed automatically when one of these keywords is specified, and the final computed energy value is displayed in the output.
Either of the Opt=Maxcyc=n, QCISD=Maxcyc=n or CCSD=Maxcyc=n keywords may be used in conjunction with any of the these keywords to specify the maximum number of optimization, QCISD, or CCSD cycles, respectively.
オプション
Options
SP
Do only a single-point energy evaluation using the specified compound model chemistry. No zero-point or thermal energies are included.
NoOpt
Perform the frequencies and single-point energy calculation for the specified model chemistry at the input geometry. Freq=TProjected is implied. This option is not meaningful or accepted for methods such as G1, which use different geometries for the frequencies and the single-point steps. StartFreq is a synonym for NoOpt.
ReadIsotopes
This option allows you to specify alternatives to the default temperature, pressure, frequency scale factor and/or isotopes—298.15 K, 1 atmosphere, no scaling, and the most abundant isotopes (respectively). It is useful when you want to rerun an analysis using different parameters from the data in a checkpoint file.
Be aware, however, that all of these can be specified in the route section (Temperature, Pressure and Scale keywords) and molecule specification (the Iso parameter), as in this example:
#T Method/6-31G(d) JobType Temperature=300.0 … … 0 1 C(Iso=13) …
ReadIsotopes input has the following format:
temp pressure [scale] | Values must be real numbers. |
isotope mass for atom 1 | |
isotope mass for atom 2 | |
… | |
isotope mass for atom n |
Where temp, pressure, and scale are the desired temperature, pressure, and an optional scale factor for frequency data when used for thermochemical analysis (the default is unscaled). The remaining lines hold the isotope masses for the various atoms in the molecule, arranged in the same order as they appeared in the molecule specification section. If integers are used to specify the atomic masses, the program will automatically use the corresponding actual exact isotopic mass (e.g., 18 specifies 18O, and Gaussian uses the value 17.99916).
Restart
Restart from the checkpoint file from a previous CBS calculation. The new job will start after the last successful calculation of the previous (unfinished) run.
オプション
Availability
Energies only.
CBS-4M and CBS-QB3 are available for first and second row atoms; CBS-APNO is available for first row atoms only.
RO may be combined with CBS-4M and CBS-QB3.
The original CBS-4 model chemistry has been updated with both the new localization procedure and improved empirical parameters [ Montgomery00 J. A. Montgomery Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VII. Use of the minimum population localization method,” J. Chem. Phys., 112 (2000) 6532-42. DOI: ]. The new version, CBS-4M, (M referring to the use of Minimal Population localization) is recommended for new studies.
適用範囲
Examples
The output from each step of a CBS method calculation is included in the output file. The final section of the file contains a summary of the results of the entire run.
CBS Summary Output. Here is the output from a CBS-QB3 calculation on CH2 (triplet state):
Complete Basis Set (CBS) Extrapolation: M. R. Nyden and G. A. Petersson, JCP 75, 1843 (1981) G. A. Petersson and M. A. Al-Laham, JCP 94, 6081 (1991) G. A. Petersson, T. Tensfeldt, and J. A. Montgomery, JCP 94, 6091 (1991) J. A. Montgomery, J. W. Ochterski, and G. A. Petersson, JCP 101, 5900 (1994) Temperature= 298.150000 Pressure= 1.000000 E(ZPE)= 0.016991 E(Thermal)= 0.019855 E(SCF)= -38.936447 DE(MP2)= -0.114761 DE(CBS)= -0.011936 DE(MP34)= -0.018720 DE(CCSD)= -0.002759 DE(Int)= 0.004204 DE(Empirical)= -0.006404 CBS-QB3 (0 K)= -39.069832 CBS-QB3 Energy= -39.066969 CBS-QB3 Enthalpy= -39.066025 CBS-QB3 Free Energy= -39.088192
The temperature and pressure are given first, followed by the components terms of the CBS-QB3 energy. The second-to-last line gives the CBS-QB3 energy values (reading across): at 0 K and at the specified temperature (298.15 K by default). The final line gives the CBS-QB3 enthalpy (including the thermal correction for the specified temperature) and the Gibbs free energy computed via the CBS-QB3 method (i.e., the CBS-QB3 energy including the frequency job free-energy correction). All of the energies are in Hartrees.
Rerunning the Calculation at a Different Temperature. The following two-step job illustrates the method for running a second (very rapid) CBS calculation at a different temperature. This job computes the CBS-QB3 energy at 298.15 K and then again at 300 K:
The energy labels thus have the following meanings (CBS-QB3 is used as an example):
CBS-QB3 (0 K) | Zero-point-corrected electronic energy: E0 = Eelec + ZPE | |
CBS-QB3 Energy | Thermal-corrected energy: E = E0 + Etrans + Erot + Evib | |
CBS-QB3 Enthalpy | Enthalpy computed using the CBS-QB3 predicted energy: H = E + RT | |
CBS-QB3 Free Energy | Gibbs Free Energy computed using the CBS-QB3 predicted energy: G = H – TS |
%Chk=cbs # CBS-QB3 Test CBS-QB3 on formaldehyde 0 1 molecule specification --Link1-- %Chk=cbs %NoSave # CBS-QB3(Restart,ReadIso) Geom=AllCheck Test 300.0 1.0 isotope specifications